This page has been proofread, but needs to be validated.
880
AMPEREMETER
  

indication below 1 ampere.
Fig. 2.–Hot-wire Ammeter.
On the other hand, hot-wire instruments are very “dead-beat,” that is to say, the needle does not move much for the small fluctuations in the current, and this quality is generally increased by affixing to the index needle a small copper plate which is made to move in a strong magnetic field (see fig. 2). Hot-wire instruments working on the sag principle can be used in any position if properly constructed, and are very portable. In the construction of such an instrument it is essential that the wire should be subjected to a process of preparation or “ageing,” which consists in passing through it a fairly strong current, at least the maximum that it will ever have to carry, and starting and stopping this current frequently. The wire ought to be so treated for many hours before it is placed in the instrument. It is also necessary to notice that shunt instruments cannot be used for high frequencies, as then the relative inductance of the shunt and wire becomes important and affects the ratio in which the current is divided, whereas for low frequency currents the inductance is unimportant. In constructing a hot-wire instrument for the measurement of high frequency currents it is necessary to make the working wire of a number of fine wires placed in parallel and slightly separated from one another, and to pass the whole of the current to be measured through this strand.

In certain forms, hot-wire instruments are well adapted for the measurement of very small alternating currents. One useful form has been made as follows:—Two fine wires of diameter not greater than ·001 in. are stretched parallel to one another and 2 or 3 mm. apart. At the middle of these parallel wires, which are preferably about 1 m. in length, rests a very light metallic bridge to which a mirror is attached, the mirror reflecting a ray of light from a lamp upon a screen. If a small alternating current is passed through one wire, it sags down, the mirror is tilted, and the spot of light on the screen is displaced. Changes of atmospheric temperature affect both wires equally and do not tilt the mirror. The instrument can be calibrated by a continuous current. Another form of hot-wire ammeter is a modification of the electric thermometer originally invented by Sir W. Snow Harris. It consists of a glass bulb, in which there is a loop of fine wire, and to the bulb is attached a U-tube in which there is some liquid. When a current is passed through the wire, continuous or alternating, it creates heat, which expands the air in the bulb and forces the liquid up one side of the U-tube to a certain position in which the rate of loss of heat by the air is equal to the rate at which it is gaining heat. The instrument can be calibrated by continuous currents and may then be used for high frequency alternating currents.


Fig. 3.—Shunted Movable Coil Ammeter, Isenthal & Co.

2. Electromagnetic Ammeters.—Another large class of ammeters depend for their action upon the fact that an electric current creates an electric field round its conductor, which varies in strength from point to point, but is otherwise proportional to the current. A small piece of iron placed in this field tends to move from weak to strong places in the field with a force depending on the strength of the field and the rate at which the field varies. In its simplest form an electromagnetic ammeter consists of a circular coil of wire in which is pivoted eccentrically an index needle carrying at its lower end a small mass of iron. The needle is balanced so that gravity compels it to take a certain position in which the fragment of iron occupies a position in the centre of the field of the coil where it is weakest. When a current is passed through the coil the iron tends to move nearer to the coil of the wire where the field is stronger and so displaces the index needle over the scale. Such an instrument is called a soft-iron gravity ammeter. Another type of similar instrument consists of a coil of wire having a fragment of iron wire suspended from one arm of an index needle near the mouth of a coil. When a current is passed through the wire forming the coil, the fragment of iron is drawn more into the aperture of the coil where the field is stronger and so displaces an index needle over a scale. In the construction of this soft-iron instrument it is essential that the fragment of iron should be as small and as well annealed as possible and not touched with tools after annealing; also it should be preferably not too elongated in shape so that it may not acquire permanent magnetization but that its magnetic condition may follow the changes of the current in the coil. If these conditions are not fulfilled sufficiently, the ammeter will not give the same indications for the same current if that current has been reached (a) by increasing from a smaller current, or (b) by decreasing from a larger current. In this case there is said to be hysteresis in the readings. Although therefore most simple and cheap to construct, such soft-iron instruments are not well adapted for accurate work. A much better form of electromagnetic ammeter can be constructed on a principle now extensively employed, which consists in pivoting in the strong field of a permanent magnet a small coil through which a part of the current to be measured is sent. Such an instrument is called a shunted movable coil ammeter, and is represented by a type of instrument shown in fig. 3. The construction of this instrument is as follows:—Within the instrument is a horseshoe magnet having soft-iron pole pieces so arranged as to produce a uniform magnetic field. In this magnetic field is pivoted a small circular or rectangular coil carried in jewelled bearings, the current being passed into and out of the movable coil by fine flexible conductors. The coil carries an index needle moving over a scale, and there is generally an iron core in the interior of the coil but fixed and independent of it. The coil is so situated that, in its zero position when no current is passing through it, the plane of the coil is parallel to the direction of the lines of force of the field. When a current is passed through the coil it rotates in the field and displaces the index over the scale against the control of a spiral spring like the hairspring of a watch. Such instruments can be made to have equidivisional scales and to read from zero upwards. It is essential that the permanent magnet should be subjected to a process of ageing so that its field may not be liable to change subsequently with time.

In the case of ammeters intended for very small currents, the whole current can be sent through the coil, but for larger currents it is necessary to provide in the instrument a shunt which carries the main current, the movable coil being connected to the ends of this shunt so that it takes a definite small fraction of the current passed through the instrument. Instruments of this type with a permanent magnetic field are only available for the measurement of continuous currents, but soft-iron instruments of