Page:Popular Science Monthly Volume 57.djvu/658

This page has been proofread, but needs to be validated.
648
POPULAR SCIENCE MONTHLY.

But Pickering maintains that, in observations of this kind upon a single star, the precision is such that the reality of the difference, small though it be, is beyond reasonable doubt.

Taking Pickering's law of change as a basis, Myers has represented the light-curve of U Pegasi on a theory similar to that which he constructed for Beta Lyræ. His conclusion is that, in the present case, the two bodies which form the visible star are in actual contact. A remarkable historic feature of the case is that Poincaré has recently investigated, by purely mathematical methods, the possible forms of revolving fluid masses in a condition of equilibrium, bringing out a number of such forms previously unknown. One of these, which he calls the apiodal form, consists of two bodies joined into one, and it is this which Myers finds for U Pegasi.

Quite similar to these two cases is that of Zeta Herculis. This star, ordinarily of the seventh magnitude, was found, at Potsdam, in 1894, to diminish by about one magnitude. Repeated observations elsewhere indicate a period of very nearly four days. Actually it is now found to be only ten minutes less than four days. The result was that during any one season of observation the minima occur at nearly the same hour every night or day. To an observer situated in such longitude that they occur during the day, they would, of course, be invisible.

Continued observations then showed a secondary minimum, occurring about half-way between the principal minima hitherto observed. It was then found that these secondary minima really occur between one and two hours earlier than the mid-moment, so that the one interval would be between forty-six and forty-seven hours and the other between forty-nine and fifty. The time which it takes the star to lose its light and regain it again is about ten hours. More recent observations, however, do not show this inequality, so that there is probably a rapid motion of the pericenter of the orbit.

It will be seen that this star combines the Algol and Beta Lyræ types. It is an Algol star in that its light remains constant between the eclipses. It is of the Beta Lyræ type in the alternate minima being unequal.

From a careful study, Seliger and Hartwig derived the following particulars respecting this system:

Diameter of principal star, 15,000,000 kilometers.
" smaller " 12,000,000 "
Mass of the larger star, 172 times sun's mass.
Mass of the smaller star, 94 times sun's mass.
Distance of centers, 45,000,000 kilometers.
Time of revolution, 3d. 23h. 49m. 32.7s.

It must be added that the data for these extraordinary numbers are rather slender and partly hypothetical.