1911 Encyclopædia Britannica/Fusible Metal

FUSIBLE METAL, a term applied to certain alloys, generally composed of bismuth, lead and tin, which possess the property of melting at comparatively low temperatures. Newton’s fusible metal (named after Sir Isaac Newton) contains 50 parts of bismuth, 31.25 of lead and 18.75 of tin; that of Jean Darcet (1725–1801), 50 parts of bismuth with 25 each of lead and tin; and that of Valentin Rose the elder, 50 of bismuth with 28.1 of lead and 24.1 of tin. These melt between 91° and 95° C. The addition of cadmium gives still greater fusibility; in Wood’s metal, for instance, which is Darcet’s metal with half the tin replaced by cadmium, the melting point is lowered to 66°–71° C.; while another described by Lipowitz and containing 15 parts of bismuth, 8 of lead, 4 of tin and 3 of cadmium, softens at about 55° and is completely liquid a little above 60°. By the addition of mercury to Darcet’s metal the melting point may be reduced so low as 45°. These fusible metals have the peculiarity of expanding as they cool; Rose’s metal, for instance, remains pasty for a considerable range of temperature below its fusing point, contracts somewhat rapidly from 80° to 55°, expands from 55° to 35°, and contracts again from 35° to 0°. For this reason they may be used for taking casts of anatomical specimens or making clichés from wood-blocks, the expansion on cooling securing sharp impressions. By suitable modification in the proportions of the components, a series of alloys can be made which melt at various temperatures above the boiling point of water; for example, with 8 parts of bismuth, 8 of lead and 3 of tin the melting point is 123°, and with 8 of bismuth, 30 of lead and 24 of tin it is 172°. With tin and lead only in equal proportions it is 241°. Such alloys are used for making the fusible plugs inserted in the furnace-crowns of steam boilers, as a safeguard in the event of the water-level being allowed to fall too low. When this happens the plug being no longer covered with water is heated to such a temperature that it melts and allows the contents of the boiler to escape into the furnace. In automatic fire-sprinklers the orifices of the pipes are closed with fusible metal, which melts and liberates the water when, owing to an outbreak of fire in the room, the temperature rises above a predetermined limit.