An Unsinkable Titanic/Chapter 7

 
CHAPTER VII

HOW THE GREAT SHIP WENT DOWN

The Titanic, fresh from the builder's hands, sailed from Southampton, Wednesday, April 10, 1912. She reached Cherbourg on the afternoon of the same day, and Queenstown, Ireland, at noon on Thursday. After embarking the mails and passengers, she left for New York, having on board 1,324 passengers and a ship's complement of officers and crew of 899 persons. The passenger list showed that there were 329 first-class, 285 second-class, and 710 third-class passengers.

The weather throughout the voyage was clear and the sea calm. At noon on the third day out, a wireless message was received from the Baltic, dated Sunday, April 14, which read: "Greek steamship Athinai reports passing icebergs and large quantity of field ice to-day in latitude 41.51 north, longitude 49.52 west." At about 7 P.M. a second warning was received by the Titanic, this time from the Californian, which reported ice about 19 miles to the northward of
 

Walker - An Unsinkable Titanic (1912) page 117.jpg

Copyright by Underwood & Underwood, N.Y.

The Last Photograph ot the Titanic, Taken as She Was Leaving Southampton on Her Maiden Voyage

 

the track on which the Titanic was steaming. The message read: "Latitude 42.3 north, longitude 49.9 west. Three large bergs five miles to southward of us." Later there was a third message: "Amerika passed two large icebergs in 41.27 north, 50.8 west on the 14th of April." A fourth message, sent by the Californian, reached the ship about an hour before the accident occurred, or about 10.40 o'clock, which said: "We are stopped and surrounded by ice."

These wireless warnings prove that the captain of the Titanic knew there was ice to the north, to the south, and immediately ahead of the southerly steamship route on which he was steaming. The evidence shows that Captain Smith remarked to the officer doing duty on the bridge, "If it is in a slight degree hazy we shall have to go very slowly." The officer of the watch instructed the lookouts to "keep a sharp lookout for ice." The night was starlit and the weather exceptionally clear.

After leaving Queenstown the speed of the Titanic had been gradually increased. The run for the first day was 464 miles, for the second 519 miles, and for the third day, ending at noon Sunday, it was 546 miles. Testimony given before the Court of Inquiry under Lord Mersey, showed that the Chief Engineer had arranged to drive the vessel at full speed for a few hours either on Monday or Tuesday. Twenty-one of the twenty-nine boilers were in use until Sunday night, when three more were "lighted." It is evident that the engines were being gradually speeded up to their maximum revolutions. Both on the bridge and in the engine-room there was a manifest reluctance to allow anything to interfere with the full-speed run of the following day. This is the only possible explanation of the amazing fact that, in spite of successive warnings that a large icefield with bergs of great size was drifting right across the course of the Titanic, fire was put under additional boilers and the speed of the ship increased.

It was shown in a previous chapter on "The Dangers of the Sea," that one of the greatest risks of high-speed travel across the North Atlantic is a certain spirit of sangfroid which is liable to be begotten of constant familiarity with danger and a continual run of good luck. If familiarity ever bred contempt, surely it must have done so among the captain and officers of the Titanic on that fatal night. One looks in vain for evidence that the situation was regarded as highly critical and calling for the most careful navigation;—calling, surely, for something more than the mere keeping of a good lookout—an imperative duty at all times, whether by day or night. Yet the fate of that ship and her precious freight of human life hung upon the mere chance of sighting an obstruction in time to avoid collision by a quick turn of the helm. The question of hitting or missing was one not of minutes but of seconds. A ship like this, nigh upon a thousand feet in length, makes a wide sweep in turning, even with the helm hard over. At 21 knots the Titanic covered over a third of a mile in a minute's time. Even with her engines reversed she would have surged ahead for a half mile or so before coming to a stop. Should she strike an obstruction at full speed, the blow delivered would equal that of the combined broadsides of two modern dreadnoughts.

And so the majestic ship swept swiftly to her doom—a concrete expression of man's age-long struggle to subdue the resistless forces of nature—a pathetic picture both of his power and his impotence. As she sped on under the dim light of the stars, not a soul on board dreamed to what a death-grapple she was coming with the relentless powers of the sea. Latest product of the shipbuilder's art, she was about to brush elbows with another giant of the sea, launched by nature from the frozen shipyards of the north, and she was to reel from the contact stricken to the death like the fragile thing she was!

At 11.46 P.M. the sharp warning came from the lookout: "Iceberg right ahead." Instantly the engines were reversed and the helm was put hard a-starboard. A few seconds earlier and she might have cleared. As it was, she struck an underwater, projecting shelf of the iceberg, and ripped open 200 feet of her plating, from forward of the collision bulkhead to a few feet aft of the bulkhead separating boiler-rooms numbers 5 and 6. It was a death wound! How deeply the iceberg cut into the fabric of the ship will never be known. Probably the first incision was deep and wide, the damage, as the shelf of ice was ground down by contact with the framing and plating of the ship becoming less in area as successive compartments were ruptured.

 

Walker - An Unsinkable Titanic (1912) page 125.jpg

Courtesy of Scientific American

The Titanic Struck a Glancing Blow Against an Under-water Shelf of the Iceberg, Opening Up Five Compartments. Had She Been Provided With a Watertight Deck At or Near the Water Line, the Water Which Entered the Ship Would Have Been Confined Below That Deck, and the Buoyancy of That Portion of the Ship Above Water Would Have Kept Her Afloat. As It Was, the Water Rose Through Openings in the Decks And Destroyed The Reserve Buoyancy

 

Whatever may have been the depth of the injury, it is certain from the evidence that the six forward compartments were opened to the sea. Immediately after the collision the whistling of air, as it issued from the escape pipe of the fore-peak tank, indicated that the tank was being filled by an inrush of water. The three following compartments, in which were located the baggage-room and mail-room, were quickly flooded. Leading fireman Barrett, who was in the forward boiler-room, felt the shock of the collision. Immediately afterwards he saw the outer skin of the ship ripped open about two feet above the floor, and a large volume of water came rushing into the ship. He was quick enough to jump through the open door in the bulkhead separating boiler-rooms 6 and 5, before it was released from the bridge. The damage just abaft of this bulkhead admitted water to the forward coal-bunker of room No. 5, which held for a while, but being of non-watertight and rather light construction, must have soon given way; for the same witness testified to a sudden rush of water coming across the floor-plates between the boilers.

In spite of the frightful extent of the damage, the Titanic, because of the great height to which her plated structure extended above the water-line, and the consequent large amount of reserve buoyancy which she possessed, would probably have remained afloat a great many hours longer than she did, had the deck to which her bulkheads extended been thoroughly watertight. As it was, this deck (upper deck E) was pierced by hatchways and stairways which, as the bow settled deeper and deeper, permitted the water to flow up over the deck and pass aft over the tops of the after bulkheads and so-called watertight compartments. See page 129.

Now, it so happened that for the full length of the boiler-rooms there had been constructed on upper deck E what was known as the "working-crew alleyway." On the inboard side of this passage six non-watertight doors opened on to as many iron ladders leading down to the boiler-rooms. Not only were these doors non-watertight, but they consisted of a mere open frame or grating, this construction having been adopted, doubtless, for purposes of ventilation. Unfortunately, although there was a watertight door at the after end of this alleyway, there was none at its forward end. The water which
 

Walker - An Unsinkable Titanic (1912) page 129.jpg

Titanic: Single skin, 16 compartments; Maurerania: double skin, 34 compartments.

Comparison of Subdivision in Two Famous Ships

 

boiled up from the forward flooded compartments, as it flowed aft, poured successively through the open grating of the alleyway doors, flooding the compartments below, one after the other.

It does not take a technically instructed mind to understand from this that the safety elements of the construction of the Titanic were as faulty above the water-line as they were below it. The absence of an inner skin and the presence of these many openings in her bulkhead deck combined to sink this huge ship, whose reserve buoyancy must have amounted to at least 80,000 tons, in the brief space of two and one-half hours.

Not until the designer, Mr. Andrews, had made known to the captain that the ship was doomed was the order given to man the lifeboats. The lifeboats, forsooth! Twenty of them in all with a maximum accommodation, if every one were loaded to its full capacity, of something over one thousand, for a ship's company that numbered 2,223 in all. Just here, in this very fatal discrepancy, is to be found proof of the widespread belief that a great ship like the Titanic was practically unsinkable, and therefore in times of dire stress such as this, was well able to act as its own lifeboat until rescuing ships, summoned by wireless, should come to her aid.

The manner of the stricken ship's final plunge to the bottom may be readily gathered from the stories told by the survivors. As compartment after compartment was filled by overflow from the decks above, her bow sank deeper and her stern lifted high in the air, until the ship, buoyed up by her after compartments, swung almost vertically in the water like a gigantic spar buoy. In this unaccustomed position, her engines and boilers, standing out from the floor like brackets from a wall, tore loose from their foundations and crashed down into the forward part of the ship. Probably it was the muffled roar of this falling machinery that caused some of the survivors to imagine that they witnessed the bursting of boilers and the breaking apart of the hull. As a matter of fact, the shell of the Titanic went to the bottom practically intact. One by one the after compartments gave way, until the ship, weighted at her forward end with the wreckage of engine- and boiler-rooms, sank, straight as an arrow, to
 

Walker - An Unsinkable Titanic (1912) page 133.jpg

Photograph by Underwood & Underwood, N. Y.

Smaller rooms would admit of higher bulkheads and better fire-protection.

The Vast Dining-Room of the Titanic

 

bury herself deep in the ooze of the Atlantic bottom two miles below. There, for aught we know, with several hundred feet of her hull rising sheer above the ocean floor, she may now be standing, a sublime memorial shaft to the fifteen hundred souls who perished in this unspeakable tragedy!

 

Walker - An Unsinkable Titanic (1912) page 121.jpg

Photograph by Underwood & Underwood, N. Y.

The elimination of swimming pools, squash courts and summer gardens would cover the cost of additional bulkheads and inner skins.

Swimming Pool on the Titanic