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Symbolic Represeoitation of Symmetric Functions.—Denote the
is transformed into the operator by the substitution
aLS aS a.9
a
a
a
(a0, a2, ...as, ...) —( o> ^o i> ^o 2>
•••)>
elementary symmetric function ky ^ 5
’ • * ’ at pleasure ;
so that the theory of the general operator is coincident with that then, taking oi equal to co , we may write
of the particular operator dv For example, the theory of inl + a1x + apc‘i+...=(l+pix)(l+p3x)... = eaix = ea.2x=ea&:=...
variants may be regarded as depending upon the consideration
of the symmetric functions of the differences of the roots of the where
equation
a
—A=
s— / flPZ'-Ps —
a0xn - (” )a1xn~1 + (” )aixn~2 - ... = 0 ;
s! s!
Further, let
and such functions satisfy the differential equation
m
1 + 1^ + bpt? +... + bmx ={ + <t1x)(1 + a pc)... (1 + <rmx) ;
a0Ca-f- '2.02 -t -yOiO-^•> -f-... -t* TICtn—p ^n ~ 0.
so that
For such functions remain unaltered when each root receives the
1+
+ atfr + ... = { + /,2<r1)(l1 + P2<ri)-• • = e<TW
>
e<r2a
same infinitesimal increment h ; but writing x-h for x causes
1
+
ai<r
‘>
2 -b a2<r 1 + ... = (1 + ^2^2) ( + P&i)- ■ ■ ~
a a
to
®o>
2> 3> •••
become respectively a , a^ha^, a^ + ^h^,
a3 + Sha2, ... and/(a0, a1} a2, a3,...) becomes 0
l+a1<xm + ana;n + ... = {l + p1<rm){f+ p2am)...=e<Tma'm )
y"t ^^ (V-tf.a 1 "b
"b 3(X20a3 “b . • • )/*,
and, by multiplication,i
l(l + ax<T + a2<r + ...) = H(l + b1p->rb3pi+ ... + bmpn
and hence the functions satisfy the differential equation. The
<T
P
important result is that the theory of invariants is from a certain
_ „<rial + a-2“2+ • ■ + a'ma.m
point of view coincident with the theory of non-unitary symmetric
functions. On the one hand we mayn staten that non-unitary
by brackets ( ) and [ ] symmetric functions of the quansymmetric functions of the roots of a0x - axx ~^ + a^n~‘2‘ - ... = 0, Denote
tities p and <r respectively.
Then
are symmetric functions of differences
of
the
roots
ot
1 + aqtl] + altl2] + «2[2] -b a?[l3] + aia2[21] -b a3[3] + ...
a0aj”-l!(”)a1a3”-1 + 2!(”)a2a3n-2- ... = 0 ;
+ apfyfyz ■ ■ aprlP1P‘2Ps-' -Pm] + ’ • •
and on the other hand that symmetric functions of the differ= 1 + &2(1) + 6?(12) + 62(2) + &?(13) + &A(21) + HZ) + ences of the roots of
+ bqibfbf. .Lq™(Hlmm~qm-1.-Hnqi) + ...
- ("Vpe”-1 -b (” )a#Sn-‘2‘ - ... = 0,
+ cr2a2. • + <rmam
are non-unitary symmetric functions of the roots of
Expanding the right-hand side by the exponential theorem, and
L +l_ lArv>
... =0.
then expressing the symmetricwefunctions of oq, cr2,_...<rm, which
2!
arise, in terms of &2> H
obtain by comparison with the
An important notion in the theory of linear operators in middle series the symbolical representation of all symmetric functions
in
brackets
(
)
appertaining
to
the quantities p^ p2, P3, —
general is that of MaciVIalion s Tfiwl/t'il'LTicciT O'pcTCitoT ( . Theory of
a Multilinear partial Differential Operator with Applications to To obtain particular theorems the quantities oq, oq, o-3,...crm are
the Theories of Invariants and Reciprocants, ” Proc. Land. Math. auxiliaries which are at our entire disposal. Thus to obtain
Soc., t. xviii. (1886), pp. 61-88). It is defined as having four Stroll’s theory of seoninvariants put
elements, and is written
bi = <rx + (t2+ ... +<rm=:[l] = 0 ;
n)
we then obtain the expression of non-unitary symmetric functions
of the quantities p as functions of differences of the symbols
am
^’2) * * •
= 1 [^a0dan + {IJ- + V) (rn-lim 0
Ex. gr. bl^) with m-2 must be a term in
m ! am-2Wi2l u
J
a
4
+
Si'H(m-l)! 1 !, 0 ®2 + fZ.
o 1! oi*0
(m-2)
2 ! ° ®1J a»+2
e<Tiai+<roa2 _ e<ri(ai ~ <*2) — ... -f icj-f (oj - Ct2) + ...,
,f m!
....
m -1
m!
m-2
+ (/t+3y)
and since bl=cr$ we must have
(m-l)~!T!ao a3 + (m_2)!i!i!«0 ^2
m!
m-3a s_9
+
(22) = Kr(ai ~ “2)4 =
" ^(“^2 + “i«D + ^“1
(m-3)!3!“°
°/ an-b3
= 2a4 - 2aLa3 + al
"]•
as is well known.
l- k fa
.
The operators
Again, if oq, aq, (r3...<rm be the m, mth roots of —1, bx = b2—...
the coefficient of a^a^a^... being
= bm—x — 0 and bm=l, leading to
«o3aI + «l3a2+— a0dai + 2alda2+- are seen to be (1, 0 ; 1,1)
1 + (m) -b (mr) + (m3) +... = ^iai+^+.. -b<~
and (1, 1 ; 1, 1) respectively. Also the operator of the Theory and
a
a
m
of Pure Reciprocants (see Sylvester Lectures on the New Theory
.’. (m‘)=:
of Reciprocants, Oxford, 1888) is
' ' ms!;(<r2 i-b<r2o2-b...-bam, m)* ,
(4, 1 ;2, l) = h4ao0C(1 + lO«oal3a2+6(2aOa2 + «l)3a3+-”}
It will be noticed that
(yu, v ; m, ri) = p{, 0 ; m, n) + i'(0, 1 ; m, n).
The importance of the operator consists in the fact that taking
any two operators of the system
(yu, v ; m, n) ; (yu1, v1 ; m1, n1).
the operator equivalent to
(/4, v ; m, ri)(y.1, vl; on1, n1) - (/a1, id ; m1, n1)^, v ; m, n),
known as the “alternant” of the two operators, is also an operator
of the same system. We have the theorem
{y.,v,m,ri)(y}, jdjm1, ti1) — (/d, v1; m1, nx){y., v ;m, «) = (^1, J'i! mi, nfj ;
where
1
1
1
1
Ml = (m + m-l)|^-1(ya + «. i')-£(/x + ?i»' )j ,
1
. .1 ,,1!' H m-1.
m1——M*'
-1 2 >
1 p )'
v,1 = (n
' 1 - ■n.)i'
'
mjon
m1=on1 + m-l,
n1 = n +n,
and we conclude that qud “alternation” the operators of the
system form a “group.” It is thus possible to study simultaneously all the theories which depend upon operations of the group.

and we see further that (oq^i + <72a2 + • ■ • +vanishes identically unless &=0 mod m. If m be infinite and
1 -b Zqa; + Zq*2 + ... = (1 + <ri*)(l +°'2a::)”*=:e^ia:;=e^2X= ••• >
we have the symbolic identity
eo-2a2+0-2012+V3«3+- • • — eP101+P202+P303+- • •,
and
(oqcti + <r 2a2 + cr 303 + .. .)p - (piPi + p.fl2 + pA + . ■ .f .
Instead of the above symbols we may use equivalent differential
operators. Thus let
ba = ufa0 + 2a + Safo^ + ...
and let a, b, c, ... be equivalent quantities. Any function of
differences of Sa, d^, dc, ... being formed the expansion being
carried out, an operand a0 or b0 or c0... being taken and b, c,...
being subsequently put equal to a, a non-unitary symmetric
function will be produced.
Ex. gr.
(Sa - 5J)2(5(i - Sc) = (S2 - 28aSb + 52)(5„ - Sc)
= 5* - 2d2a8b + 5Jl - 5% + 28a8b8c - 5%
= 6a, - iaJ)x + 2a,bo - 2a,,c. + 2ai&2Ci_ 2b2cx
= 2(al-3a1a2 + 3a?) = 2(3).
The whole theory of these forms is consequently contained imI plicitly in the operation 5.
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