Page:A Treatise on Electricity and Magnetism - Volume 1.djvu/183

This page has been proofread, but needs to be validated.

we are required to estimate what will be the electrification of bodies whose forms are given, we may begin with some case in which one of the equipotential surfaces takes a form somewhat resembling the given form, and then by a tentative method we may modify the problem till it more nearly corresponds to the given case. This method is evidently very imperfect considered from a mathematical point of view, but it is the only one we have, and if we are not allowed to choose our conditions, we can make only an approximate calculation of the electrification. It appears, therefore, that what we want is a knowledge of the forms of equipotential surfaces and lines of induction in as many different cases as we can collect together and remember. In certain classes of cases, such as those relating to spheres, we may proceed by mathematical methods. In other cases we cannot afford to despise the humbler method of actually drawing tentative figures on paper, and selecting that which appears least unlike the figure we require.

This latter method I think may be of some use, even in cases in which the exact solution has been obtained, for I find that an eye-knowledge of the forms of the equipotential surfaces often leads to a right selection of a mathematical method of solution.

I have therefore drawn several diagrams of systems of equipotential surfaces and lines of force, so that the student may make himself familiar with the forms of the lines. The methods by which such diagrams may be drawn will be explained as we go on, as they belong to questions of different kinds.

118.] In the first figure at the end of this volume we have the equipotential surfaces surrounding two points electrified with quantities of electricity of the same kind and in the ratio of 20 to 5.

Fig. I

Here each point is surrounded by a system of equipotential surfaces which become more nearly spheres as they become smaller, but none of them are accurately spheres. If two of these surfaces, one surrounding each sphere, be taken to represent the surfaces of two conducting bodies, nearly but not quite spherical, and if these bodies be charged with the same kind of electricity, the charges being as 4 to 1, then the diagram will represent the equipotential surfaces, provided we expunge all those which are drawn inside the two bodies. It appears from the diagram that the action between the bodies will be the same as that between two points having the same charges, these points being not exactly in the middle of the axis of each body, but somewhat more remote than the middle point from the other body.