Page:A history of the theories of aether and electricity. Whittacker E.T. (1910).pdf/226

This page has been proofread, but needs to be validated.
206
Faraday.

to the chemical affinities producing it; that when it is deficient in force it may be helped by calling in chemical aid, the want in the former being made up by an equivalent of the latter; that, in other words, the forces termed chemical affinity and electricity are one and the same."

In the interval between Faraday's earlier and later papers on the cell, some important results on the same subject were published by Frederic Daniell (b. 1790, d. 1845), Professor of Chemistry in King's College, London.[1] Daniell showed that when a current is passed through a solution of a salt in water, the ions which carry the current are those derived from the salt, and not the oxygen and hydrogen ions derived from the water; this follows since a current divides itself between different mixed electrolytes according to the difficulty of decomposing each, and it is known that pure water can be electrolysed only with great difficulty. Daniell further showed that the ions arising from (say) sodium sulphate are not represented by Na2O and SO3, but by Na and SO4, and that in such a case as this, sulphuric acid is formed at the anode and soda at the cathode by secondary action, giving rise to the observed evolution of oxygen and hydrogen respectively at these terminals.

The researches of Faraday on the decomposition of chemical compounds placed between electrodes maintained at different potentials led him in 1837 to reflect on the behaviour of such substances as oil of turpentine or sulphur, when placed in the same situation. These bodies do not conduct electricity, and are not decomposed; but if the metallic faces of a condenser are maintained at a definite potential difference, and if the space between them is occupied by one of these insulating substances, it is found that the charge on either face depends on the nature of the insulating substance. If for any particular insulator the charge has a value ε times the value which it would have if the intervening body were air, the number ε may be regarded as a measure of the influence which the insulator exerts on the propagation of electrostatic action

  1. Phil. Trans., 1839, p. 97.