Page:A history of the theories of aether and electricity. Whittacker E.T. (1910).pdf/258

This page has been proofread, but needs to be validated.
238
The Mathematical Electricians of the

By taking a large number of such pairs of magnetic molecules, originally oriented in all directions, and at such distances that the pairs do not sensibly influence each other, we may construct a model whose behaviour under the influence of an external magnetic field will closely resemble the actual behaviour of ferromagnetic bodies.

In order that the magnets in the model may come to rest in their new positions after reversal, it will be necessary to suppose that they experience some kind of dissipative force which damps the oscillations; to this would correspond in actual magnetic substances the electric currents which would be set up in the neighbouring mass when the molecular magnets are suddenly reversed; in either case, the sudden reversals are attended by a transformation of magnetic energy into heat.

The transformation of energy from one form to another is a subject which was first treated in a general fashion shortly before the middle of the nineteenth century. It had long been known that the energy of motion and the energy of position of a dynamical system are convertible into each other, and that the amount of their sum remains invariable when the system is self-contained. This principle of conservation of dynamical energy had been extended to optics by Fresnel, who had assumed[1] that the energy brought to an interface by incident light is equal to the energy carried away from the interface by the reflected and refracted beams. A similar conception was involved in Roget's and Faraday's defence[2] of the chemical theory of the voltaic cell; they argued that the work done by the current in the outer circuit must be provided at the expense of the chemical energy stored in the cell, and showed that the quantity of electricity sent round the circuit is proportional to the quantity of chemicals consumed, while its tension is proportional to the strength of the chemical affinities concerned in the reaction. This theory was extended

  1. Cf. p. 133.
  2. Cf. p. 203.