Page:Cold Nuclear Fusion A Hypothesis.pdf/1

This page has been validated.

COLD NUCLEAR FUSION: A HYPOTHESIS


Vernon Nemitz[1]


Synopsis

A mechanism for low-temperature nuclear fusion reactions is described, in which first deuterium atoms donate their electrons to the conduction band of a metallic-crystal lattice, and second thermal motion allows bare deuterons to begin to approach each other, and third loose non-orbiting electrons from the conduction band shield the deuterons from their mutual electrostatic repulsion, until they become close enough together that they can be influenced by the strong nuclear force. This "electron catalysis" is similar in some respects to the well-studied phenomenon known as "muon catalysis." Additionally, Quantum Mechanics (QM) allows for a large number of electrons to be involved, which in turn allows the energy of the fusion reaction to be distributed among many particles. The net result is that the overall reaction is the very simple D+D→He4, with no significant nuclear radiation of any sort released.

The author acknowledges that a hypothesis is just a guess, an attempt to create an explanation for certain observations. Additional observations are required before the guess can be considered to be anything more than that. The first version of the hypothesis was posted on the Internet in 2000, and now only exists at www.archive.org. This version of the hypothesis incorporates some additional material to explain a "typical" lack of nuclear radiation. There is some irony in that, detailed in Part Seven.

The first four parts of this paper contain a lot of background information, presented partly so that the interested and less-informed reader might gain an understanding of the subject, and partly to allow a "check" of how this hypothesis has been put together. Obviously if an error exists in the background information presented here, the conclusion that depends on it may be faulty.


1. Background: The Strong Nuclear Force and Potential Energy

One of the particles found in the atomic nucleus—the proton—possesses an electric charge, and two protons in close proximity will experience an electromagnetic-force interaction (of the "electrostatic" variety) in which they tend to strongly repel each other. This repulsion must be overcome if they (or many protons) are to persist together in an atomic nucleus. Since complex atomic nuclei do exist, it is apparent that there does exist a mechanism for overcoming electrostatic repulsion, and that mechanism is generally called "the strong nuclear force."

In trying to understand how the strong force worked, a particular particle was hypothesized, to "mediate" or "carry" the force between nucleons. That particle was discovered and is now known as the "pion"; it can interact with a nucleon in a trillionth of a trillionth of a second. Later, it was discovered that nucleons were themselves composed of smaller particles ("quarks"), and the strong force had to be involved in a different way (involving a different mediating particle, the "gluon") to hold quarks together. It happens that pions are also made from quarks and that interactions involving pions and nucleons are mostly sufficient for explaining both how nucleons hold together in a complex nucleus and how nuclear fusion can occur (so quarks and gluons can be mostly ignored here).

An additional relevant point involves the concept of "potential energy." This is known to take the form of mass, for particles that interact via the strong force. That is, if a nuclear reaction releases energy, the particles that have reacted can be measured to have lost mass. Before the reaction occurs, the energy-to-be-released can be said to only "potentially" exist, although more accurately it can be said that the reaction simply converts some mass into some energy, that energy and mass are different forms of a larger concept, often referred to as "mass/energy."


2. Background: Anti-particles and Virtual Particles and Cloudiness

Over the years physicists have discovered that every electrically charged particle can exist in two varieties that are identical to each other in almost every way, the primary exception being that they have opposite electric charges. One particular "set" of charged particles appears to be what most of the matter in the Universe is constructed from, so we call that set "ordinary matter." Any matter that is constructed from the opposite set of charged particles is called "anti-matter." It is also known that almost every electrically neutral particle appears to be constructed from smaller charged particles. It is more commonly known that when ordinary matter and anti-matter interact with each other, they can destroy or "annihilate" each other, entirely converting their mass into energetic particles. It happens that some neutral particles (the neutral pion, for one), consist of quarks that can annihilate each other, and some neutral particles (like the neutron), consist of quarks that cannot annihilate each other. And as we might expect, the neutron is a much longer-lasting particle than the neutral pion!

The development of QM, to explain events at very small scales, came with a number of unexpected consequences. One of them was a prediction, since verified, that something that might look like a perfect vacuum, a volume empty of all matter, is nevertheless not empty. All through that volume,

36 INFINITE ENERGY • ISSUE 81 • SEPTEMBER/OCTOBER 2008