This page has been proofread, but needs to be validated.
  
ALGEBRA
619

“irreducible case” (see Equation). Fundamental theorems in the theory of equations are to be found in the same work. Clearer ideas of imaginary quantities and the “irreducible case” were subsequently published by Bombelli, in a work of which the dedication is dated 1572, though the book was not published until 1579.

Contemporaneously with the remarkable discoveries of the Italian mathematicians, algebra was increasing in popularity in Germany, France and England. Michael Stifel and Johann Scheubelius (Scheybl) (1494 – 1570) flourished in Germany, and although unacquainted with the work of Cardan and Tartalea, their writings are noteworthy for their perspicuity and the introduction of a more complete symbolism for quantities and operations. Stifel introduced the sign (+) for addition or a positive quantity, which was previously denoted by plus, piū, or the letter p. Subtraction, previously written as minus, mene or the letter m, was symbolized by the sign (−) which is still in use. The square root he denoted by (√), whereas Paciolus, Cardan and others used the letter R.

The first treatise on algebra written in English was by Robert Recorde, who published his arithmetic in 1552, and his algebra entitled The Whetstone of Witte, which is the second part of Arithmetik, in 1557. This work, which is written in the form of a dialogue, closely resembles the works of Stifel and Scheubelius, the latter of whom he often quotes. It includes the properties of numbers; extraction of roots of arithmetical and algebraical quantities, solutions of simple and quadratic equations, and a fairly complete account of surds. He introduced the sign (=) for equality, and the terms binomial and residual. Of other writers who published works about the end of the 16th century, we may mention Jacques Peletier, or Jacobus Peletarius (De occulta parte Numerorum, quam Algebram vocant, 1558); Petrus Ramus (Arithmeticae Libri duo et totidem Algebrae, 1560), and Christoph Clavius, who wrote on algebra in 1580, though it was not published until 1608. At this time also flourished Simon Stevinus (Stevin) of Bruges, who published an arithmetic in 1585 and an algebra shortly afterwards. These works possess considerable originality, and contain many new improvements in algebraic notation; the unknown (res) is denoted by a small circle, in which he places an integer corresponding to the power. He introduced the terms multinomial, trinomial, quadrinomial, &c., and considerably simplified the notation for decimals.

About the beginning of the 17th century various mathematical works by Franciscus Vieta were published, which were afterwards collected by Franz van Schooten and republished in 1646 at Leiden. These works exhibit great originality and mark an important epoch in the history of algebra. Vieta, who does not avail himself of the discoveries of his predecessors—the negative roots of Cardan, the revised notation of Stifel and Stevin, &c.—introduced or popularized many new terms and symbols, some of which are still in use. He denotes quantities by the letters of the alphabet, retaining the vowels for the unknown and the consonants for the knowns; he introduced the vinculum and among others the terms coefficient, affirmative, negative, pure and adfected equations. He improved the methods for solving equations, and devised geometrical constructions with the aid of the conic sections. His method for determining approximate values of the roots of equations is far in advance of the Hindu method as applied by Cardan, and is identical in principle with the methods of Sir Isaac Newton and W. G. Horner.

We have next to consider the works of Albert Girard, a Flemish mathematician. This writer, after having published an edition of Stevin’s works in 1625, published in 1629 at Amsterdam a small tract on algebra which shows a considerable advance on the work of Vieta. Girard is inconsistent in his notation, sometimes following Vieta, sometimes Stevin; he introduced the new symbols ff for greater than and § for less than; he follows Vieta in using the plus (+) for addition, he denotes subtraction by Recorde’s symbol for equality (=), and he had no sign for equality but wrote the word out. He possessed clear ideas of indices and the generation of powers, of the negative roots of equations and their geometrical interpretation, and was the first to use the term imaginary roots. He also discovered how to sum the powers of the roots of an equation.

Passing over the invention of logarithms (q.v.) by John Napier, and their development by Henry Briggs and others, the next author of moment was an Englishman, Thomas Harriot, whose algebra (Artis analyticae praxis) was published posthumously by Walter Warner in 1631. Its great merit consists in the complete notation and symbolism, which avoided the cumbersome expressions of the earlier algebraists, and reduced the art to a form closely resembling that of to-day. He follows Vieta in assigning the vowels to the unknown quantities and the consonants to the knowns, but instead of using capitals, as with Vieta, he employed the small letters; equality he denoted by Recorde’s symbol, and he introduced the signs > and < for greater than and less than. His principal discovery is concerned with equations, which he showed to be derived from the continued multiplication of as many simple factors as the highest power of the unknown, and he was thus enabled to deduce relations between the coefficients and various functions of the roots. Mention may also be made of his chapter on inequalities, in which he proves that the arithmetic mean is always greater than the geometric mean.

William Oughtred, a contemporary of Harriot, published an algebra, Clavis mathematicae, simultaneously with Harriot’s treatise. His notation is based on that of Vieta, but he introduced the sign ✕ for multiplication, ∺ for continued proportion, ∷ for proportion, and denoted ratio by one dot. This last character has since been entirely restricted to multiplication, and ratio is now denoted by two dots (:). His symbols for greater than and less than (⫎ and  ┐) have been completely superseded by Harriot’s signs.

So far the development of algebra and geometry had been mutually independent, except for a few isolated applications of geometrical constructions to the solution of algebraical problems. Certain minds had long suspected the advantages which would accrue from the unrestricted application of algebra to geometry, but it was not until the advent of the philosopher Réné Descartes that the co-ordination was effected. In his famous Geometria (1637), which is really a treatise on the algebraic representation of geometric theorems, he founded the modern theory of analytical geometry (see Geometry), and at the same time he rendered signal service to algebra, more especially in the theory of equations. His notation is based primarily on that of Harriot; but he differs from that writer in retaining the first letters of the alphabet for the known quantities and the final letters for the unknowns.

The 17th century is a famous epoch in the progress of science, and the mathematics in no way lagged behind. The discoveries of Johann Kepler and Bonaventura Cavalieri were the foundation upon which Sir Isaac Newton and Gottfried Wilhelm Leibnitz erected that wonderful edifice, the Infinitesimal Calculus (q.v.). Many new fields were opened up, but there was still continual progress in pure algebra. Continued fractions, one of the earliest examples of which is Lord Brouncker’s expression for the ratio of the circumference to the diameter of a circle (see Circle), were elaborately discussed by John Wallis and Leonhard Euler; the convergency of series treated by Newton, Euler and the Bernoullis; the binomial theorem, due originally to Newton and subsequently expanded by Euler and others, was used by Joseph Louis Lagrange as the basis of his Calcul des Fonctions. Diophantine problems were revived by Gaspar Bachet, Pierre Fermat and Euler; the modern theory of numbers was founded by Fermat and developed by Euler, Lagrange and others; and the theory of probability was attacked by Blaise Pascal and Fermat, their work being subsequently expanded by James Bernoulli, Abraham de Moivre, Pierre Simon Laplace and others. The germs of the theory of determinants are to be found in the works of Leibnitz; Étienne Bézout utilized them in 1764 for expressing the result obtained by the process of elimination known by his name, and since restated by Arthur Cayley.

In recent times many mathematicians have formulated other kinds of algebras, in which the operators do not obey the laws of