Page:EB1911 - Volume 02.djvu/23

This page has been proofread, but needs to be validated.
12
ANGIOSPERMS

however, the cotyledon is not really terminal. The primary root of the embryo in all Angiosperms points towards the micropyle. The developing embryo at the end of the suspensor grows out to a varying extent into the forming endosperm, from which by surface absorption it derives good material for growth; at the same time the suspensor plays a direct part as a carrier of nutrition, and may even develop, where perhaps no endosperm is formed, special absorptive “suspensor roots” which invest the developing embryo, or pass out into the body and coats of the ovule, or even into the placenta. In some cases the embryo or the embryo-sac sends out suckers into the nucellus and ovular integument. As the embryo develops it may absorb all the food material available, and store, either in its cotyledons or in its hypocotyl, what is not immediately required for growth, as reserve-food for use in germination, and by so doing it increases in size until it may fill entirely the embryo-sac; or its absorptive power at this stage may be limited to what is necessary for growth and it remains of relatively small size, occupying but a small area of the embryo-sac, which is otherwise filled with endosperm in which the reserve-food is stored. There are also intermediate states. The position of the embryo in relation to the endosperm varies, sometimes it is internal, sometimes external, but the significance of this has not yet been established.

The formation of endosperm starts, as has been stated, from the endosperm nucleus. Its segmentation always begins before that of the egg, and thus there is timely preparation for the nursing of the young embryo. If in its extension to contain the new formations within it the embryo-sac remains narrow, endosperm formation proceeds upon the lines of a cell-division, but in wide embryo-sacs the endosperm is first of all formed as a layer of naked cells around the wall of the sac, and only gradually acquires a pluricellular character, forming a tissue filling the sac. The function of the endosperm is primarily that of nourishing the embryo, and its basal position in the embryo-sac places it favourably for the absorption of food material entering the ovule. Its duration varies with the precocity of the embryo. It may be wholly absorbed by the progressive growth of the embryo within the embryo-sac, or it may persist as a definite and more or less conspicuous constituent of the seed. When it persists as a massive element of the seed its nutritive function is usually apparent, for there is accumulated within its cells reserve-food, and according to the dominant substance it is starchy, oily, or rich in cellulose, mucilage or proteid. In cases where the embryo has stored reserve food within itself and thus provided for self-nutrition, such endosperm as remains in the seed may take on other functions, for instance, that of water-absorption.

Some deviations from the usual course of development may be noted. Parthenogenesis, or the development of an embryo from an egg-cell without the latter having been fertilized has been described in species of Thalictrum, Antennaria and Alchemilla. Polyembryony is generally associated with the development of cells other than the egg-cell. Thus in Erythronium and Limnocharis the fertilized egg may form a mass of tissue on which several embryos are produced. Isolated cases show that any of the cells within the embryo-sac may exceptionally form an embryo, e. g. the synergidae in species of Mimosa, Iris and Allium, and in the last-mentioned the antipodal cells also. In Coelebogyne (Euphorbiaceae) and in Funkia (Liliaceae) polyembryony results from an adventitious production of embryos from the cells of the nucellus around the top of the embryo-sac. In a species of Allium, embryos have been found developing in the same individual from the egg-cell, synergies, antipodal cells and cells of the nucellus. In two Malayan species of Balanophora, the embryo is developed from a cell of the endosperm, which is formed from the upper polar nucleus only, the egg apparatus becoming disorganized. The last-mentioned case has been regarded as representing an apogamous development of the sporophyte from the gametophyte comparable to the cases of apogamy described in Ferns. But the great diversity of these abnormal cases as shown in the examples cited above suggests the use of great caution in formulating definite morphological theories upon them.

As the development of embryo and endosperm proceeds within the embryo-sac, its wall enlarges and commonly absorbs the substance of the nucellus (which is likewise enlarging) to near its outer limit, and combines with it and the integument Fruit and seed. to form the seed-coat; or the whole nucellus and even the integument may be absorbed. In some plants the nucellus is not thus absorbed, but itself becomes a seat of deposit of reserve-food constituting the perisperm which may coexist with endosperm, as in the water-lily order, or may alone form a food-reserve for the embryo, as in Canna. Endospermic food-reserve has evident advantages over perispermic, and the latter is comparatively rarely found and only in non-progressive series. Seeds in which endosperm or perisperm or both exist are commonly called albuminous or endospermic, those in which neither is found are termed exalbuminous or exendospermic. These terms, extensively used by systematists, only refer, however, to the grosser features of the seed, and indicate the more or less evident occurrence of a food-reserve; many so-called exalbuminous seeds show to microscopic examination a distinct endosperm which may have other than a nutritive function. The presence or absence of endosperm, its relative amount when present, and the position of the embryo within it, are valuable characters for the distinction of orders and groups of orders. Meanwhile the ovary wall has developed to form the fruit or pericarp, the structure of which is closely associated with the manner of distribution of the seed. Frequently the influence of fertilization is felt beyond the ovary, and other parts of the flower take part in the formation of the fruit, as the floral receptacle in the apple, strawberry and others. The character of the seed-coat bears a definite relation to that of the fruit. Their function is the twofold one of protecting the embryo and of aiding in dissemination; they may also directly promote germination. If the fruit is a dehiscent one and the seed is therefore soon exposed, the seed-coat has to provide for the protection of the embryo and may also have to secure dissemination. On the other hand, indehiscent fruits discharge these functions for the embryo, and the seed-coat is only slightly developed. Dissemination is effected by the agency of water, of air, of animals—and fruits and seeds are Dissemination. therefore grouped in respect of this as hydrophilous, anemophilous and zooidiophilous. The needs for these are obvious—buoyancy in water and resistance to wetting for the first, some form of parachute for the second, and some attaching mechanism or attractive structure for the third. The methods in which these are provided are of infinite variety, and any and every part of the flower and of the inflorescence may be called into requisition to supply the adaptation (see Fruit). Special outgrowths, arils, of the seed-coat are of frequent occurrence. In the feature of fruit and seed, by which the distribution of Angiosperms is effected, we have a distinctive character of the class. In Gymnosperms we have seeds, and the carpels may become modified and close around these, as in Pinus, during the process of ripening to form an imitation of a box-like fruit which subsequently opening allows the seeds to escape; but there is never in them the closed ovary investing from the outset the ovules, and ultimately forming the ground-work of the fruit.

Their fortuitous dissemination does not always bring seeds upon a suitable nidus for germination, the primary essential of which is a sufficiency of moisture, and the duration of vitality of the embryo is a point of interest. Some Germination of seed. seeds retain vitality for a period of many years, though there is no warrant for the popular notion that genuine “mummy wheat” will germinate; on the other hand some seeds lose vitality in little more than a year. Further, the older the seed the more slow as a general rule will germination be in starting, but there are notable exceptions. This pause, often of so long duration, in the growth of the embryo between the time of its perfect development within the seed and the moment of germination, is one of the remarkable and distinctive features of the life of Spermatophytes. The aim of germination is the fixing of the embryo in the soil, effected usually by means of the root, which is the first part of the embryo to appear, in preparation for the elongation of the epicotyledonary portion of the shoot, and there is infinite variety in the details of the process. In