Page:EB1911 - Volume 02.djvu/852

This page has been proofread, but needs to be validated.
heavenly bodies is perhaps the most complicated with which the mathematical astronomer has to grapple; and the forms under which it has to be studied are so numerous that they cannot be easily arranged under any one head. But there is one conception of perturbations of such generality and elegance that it forms the common base of all those methods of determining these deviations which have high scientific interest. This conception is embodied in the method of “variation of elements,” originally due to J. L. Lagrange. The simplest method of presenting it starts with the second view of the elliptic motion already set forth.
We have shown that, when the position of a planet and the direction and speed of its motion at a certain instant are given, the elements of the orbit can be determined. We have supposed this to be done at a certain point P of the orbit, the direction and speed being expressed by the variables x, y, x′ and y′. Now, consider the values of these same variables expressing the position of the planet at a second point Q, and the speed with which it passes that point. With this position and speed the elements of the orbit can again be determined. Since the orbit is unchanged so long as no disturbing force acts, it follows that the elements determined by means of the two sets of values of the variables are in this case the same. In a word, although the position and speed of the planet and the direction of its motion are constantly changing, the values of the elements determined from these variables remain constant. This fact is fully expressed by the equations (4) where we have constants on one side of the equation equal to functions of the variables on the other. Functions of the variables possessing this property of remaining constant are termed integrals.
Now let the planet be subjected to any force additional to that of the sun’s attraction,—say to the attraction of another planet. To fix the ideas let us suppose that the additional attraction is only an impulse received at the moment of passing the point P. The first effect will evidently be to change either the velocity or the direction in which the planet is moving at the moment, or both. If, with the changed velocity we again compute the elements they will be different from the former elements. But, if the impulse is not repeated, these new elements will again remain invariable. If repeated, the second impulse will again change the elements, and so on indefinitely. It follows that, if we go on computing the elements a, b, c, d from the actual values of x, y, x′ and y′, at each moment when the planet is subject to the attraction of another body, they will no longer be invariable, but will slowly vary from day to day and year to year. These ever varying elements represent an ever varying elliptic orbit,—not an orbit which the planet actually describes through its whole course, but an ideal one in which it is moving at each instant, and which continually adjusts itself to the actual motion of the planet at the instant. This is called the osculating orbit.
The essential principle of Lagrange’s elegant method consists in determining the variations of this osculating ellipse, the co-ordinates and velocities of the planet being ignored in the determination. This may be done because, since the elements and co-ordinates completely determine each other, we may concentrate our attention on either, ignoring the other. The reason for taking the elements as the variables is that they vary very slowly, a property which facilitates their determination, since the variations may be treated as small quantities, of which the squares and products may be neglected in a first solution. In a second solution the squares and products may be taken account of, and so on as far as necessary.
If the problem is viewed from a synthetic point of view, the stages of its solution are as follows. We first conceive of the planets as moving in invariable elliptic orbits, and thus obtain approximate expressions for their positions at any moment. With these expressions we express their mutual action, or their pull upon each other at any and every moment. This pull determines the variations of the ideal elements. Knowing these variations it becomes possible to represent by integration the value of the elements as algebraic expressions containing the time, and the elements with which we started. But the variations thus determined will not be rigorously exact, because the pull from which they arise has been determined on the supposition that the planets are moving in unvarying orbits, whereas the actual pull depends on the actual position of the planets. Another approximation is, therefore, to be made, when necessary, by correcting the expression of the pull through taking account of the variations of the elements already determined, which will give a yet nearer approximation to the truth. In theory these successive approximations may be carried as far as we please, but in practice the labour of executing each approximation is so great that we are obliged to stop when the solution is so near the truth that the outstanding error is less than that of the best observations. Even this degree of precision may be impracticable in the more complex cases.
The results which are required to compare with observations are not merely the elements, but the co-ordinates. When the varying elements are known these are computed by the equations (2) because, from the nature of the algebraic relations, the slowly varying elements are continuously determined by the equations (4), which express the same relations between the elements and the variables as do the equations (2) and (3). This method is, therefore, in form at least, completely rigorous. There are some cases in which it may be applied unchanged. But commonly it proves to be extremely long and cumbrous, and modifications have to be resorted to. Of these modifications the most valuable is one conceived by P. A. Hansen. A certain mean elliptic orbit, as near as possible to the actual varying orbit of the planet, is taken. In this orbit a certain fictitious planet is supposed to move according to the law of elliptic motion. Comparing the longitudes of the actual and the fictitious planet the former will sometimes be ahead of the latter and sometimes behind it. But in every case, if at a certain time t, the actual planet has a certain longitude, it is certain that at a very short interval dt before or after t, the fictitious planet will have this same longitude. What Hansen’s method does is to determine a correction dt such that, being applied to the actual time t, the longitude of the fictitious planet computed for the time t + dt, will give the longitude of the true planet at the time t. By a number of ingenious devices Hansen developed methods by which dt could be determined. The computations are, as a general rule, simpler, and the algebraic expressions less complex, than when the computations of the longitude itself are calculated. Although the longitude of the fictitious planet at the fictitious time is then equal to that of the true planet at the true time, their radii vectores will not be strictly equal. Hansen, therefore, shows how the radius vector is corrected so as to give that of the true planet.
In all that precedes we have considered only two variables as determining the position of the planet, the latter being supposed to move in a plane. Although this is true when there are any number of bodies moving in the same plane, the fact is that the planets move in slightly different planes. Hence the position of the plane of the orbit of each planet is continually changing in consequence of their mutual action. The problem of determining the changes is, however, simpler than others in perturbations. The method is again that of the variation of elements. The position and velocity being given in all three co-ordinates, a certain osculating plane is determined for each instant in which the planet is moving at that instant. This plane remains invariable so long as no third body acts; when it does act the position of the plane changes very slowly, continually rotating round the radius vector of the planet as an instantaneous axis of rotation.
Secular and Periodic Variations.—When, following the preceding method, the variations of the elements are expressed in terms of the time, they are found to be of two classes, periodic and secular. The first depend on the mean longitudes of the planets, and always tend back to their original values when the planets return to their original positions in their orbits. The others are, at least through long periods of time, continually progressive.
A luminous idea of the nature of these two classes of variation may be gained by conceiving of the motion of a ship, floating on an ocean affected by a long ground swell. In consequence of the swell, the ship is continually pitching in a somewhat irregular way, the oscillations up and down being sometimes great and sometimes small. An observer on board of her would notice no motion except this. But, suppose the tide to be rising. Then, by continued observation, extended over an hour or more, it will be found that, in the general average, the ship is gradually rising, so that two different kinds of motion are superimposed on each other. The effect of the rising tide is in the nature of a secular variation, while the pitching is periodic.
But the analogy does not end here. If the progressive rise of the ship be watched for six hours or more, it will be found gradually to cease and reverse its direction. That is to say, making abstraction of the pitching, the ship is slowly rising and falling in a total period of nearly twelve hours, while superimposed upon this slow motion is a more rapid motion due to the waves. It is thus with the motions of the planets going through their revolutions. Each orbit continually changes its form and position, sometimes in one direction and sometimes in another. But when these changes are averaged through years and centuries it is found that the average orbit has a secular variation which, for a number of centuries, may appear as a very slow progressive change in one direction only. But when this change is more fully investigated, it is found to be really periodic, so that after thousands, tens of thousands, or hundreds of thousands of years, its direction will be reversed and so on continually, like the rising and falling tide. The orbits thus present themselves to us in the words of a distinguished writer as “Great clocks of eternity which beat ages as ours beat seconds.”
The periodic variations can be represented algebraically as the resultant of a series of harmonic motions in the following way: Let L be an angle which is increasing uniformly with the time, and let n be its rate of increase. We put L0 for its value at the moment from which the time is reckoned. The general expression for the angle will then be

L = nt + L0.

Such an angle continually goes through the round of 360° in a definite period. For example, if the daily motion is 5°, and we take the day as the unit of time, the round will be completed in 72 days, and the angle will continually go through the value which it had 72 days before. Let us now consider an equation of the form

U = a sin (nt + L0).

The value of U will continually oscillate between the extreme values +a and −a, going through a series of changes in the same