Page:EB1911 - Volume 02.djvu/909

This page has been proofread, but needs to be validated.
861
ATMOSPHERIC ELECTRICITY

displaced by the sphere, and assumes a statical state of conditions and that the conductor itself exerts no disturbing influence. Suppose now that the sphere’s earth connexion is broken and that it is carried without loss of charge inside a building at zero potential. If its potential as observed there is −V (volts), then the potential of the air at the spot occupied by the sphere was +V. This method in one shape or another has been often employed. Suppose next that a fixed insulated conductor is somehow kept at the potential of the air at a given point, then the measurement of its potential is equivalent to a measurement of that of the air. This is the basis of a variety of methods. In the earliest the conductor was represented by long metal wires, supported by silk or other insulating material, and left to pick up the air’s potential. The addition of sharp points was a step in advance; but the method hardly became a quantitative one until the sharp points were replaced by a flame (fuse, gas, lamp), or by a liquid jet breaking into drops. The matter leaving the conductor, whether the products of combustion or the drops of a liquid, supplies the means of securing equality of potential between the conductor and the air at the spot where the matter quits electrical connexion with the conductor. Of late years the function of the collector is discharged in some forms of apparatus by a salt of radium. Of flame collectors the two best known are Lord Kelvin’s portable electrometer with a fuse, or F. Exner’s gold leaf electroscope in conjunction with an oil lamp or gas flame. Of liquid collectors the representative is Lord Kelvin’s water-dropping electrograph; while Benndorf’s is the form of radium collector that has been most used. It cannot be said that any one form of collector is superior all round. Flame collectors blow out in high winds, whilst water-droppers are apt to get frozen in winter. At first sight the balance of advantages seems to lie with radium. But while gaseous products and even falling water are capable of modifying electrical conditions in their immediate neighbourhood, the “infection” produced by radium is more insidious, and other drawbacks present themselves in practice. It requires a radium salt of high radioactivity to be at all comparable in effectiveness with a good water-dropper. Experiments by F. Linke (8) indicated that a water-dropper having a number of fine holes, or having a fine jet under a considerable pressure, picks up the potential in about a tenth of the time required by the ordinary radium preparation protected by a glass tube. These fine jet droppers with a mixture of alcohol and water have proved very effective for balloon observations.


Table I.—Annual Variation Potential Gradient.

Place and Period.  Jan.   Feb.  March. April.  May.   June.   July.   Aug.   Sept.   Oct.   Nov.   Dec. 
Karasjok (10), 1903-1904
Sodankylä (31), 1882-1883
Potsdam (9), 1904
Kew (12), 1898-1904
Greenwich (13), 1893-1894, 1896
Florence (14), 1883-1886
Perpignan (15), 1886-1888
Lisbon (16), 1884-1886
Tokyo (17), 1897-1898, 1900-1901
Batavia (18)(2 m.), 1887-1890
Batavia (7.8 m.) 1890-1895
143
 94
167
127
110
132
121
104
165
 97
100
150
133
 95
141
112
110
112
105
145
115
 89
137
148
118
113
127
 98
108
104
117
155
103
 94
155
 88
 87
107
 84
 89
 92
 86
127
120
 74
186
 93
 77
 83
 86
 91
 91
 62
129
 98
 65
 93
 72
 70
 71
 81
 92
 93
 58
105
103
70
53
73
61
76
77
89
87
41
79
85
 67
 77
 65
 72
 84
 90
 82
 92
 59
 62
 99
 67
 47
 97
 76
 83
 89
 74
100
 59
 69
 73
 87
 72
101
 96
104
 99
 99
 99
 97
 79
101
120
 71
108
126
104
129
122
115
134
 90
117
126
 71
123
153
139
125
121
117
176
 93
112


3. Before considering observational data, it is expedient to mention various sources of uncertainty. Above the level plain of absolutely smooth surface, devoid of houses or vegetation, the equipotential surfaces under normal conditions would be strictly horizontal, and if we could determine the potential at one metre above the ground we should have a definite measure of the potential gradient at the earth’s surface. The presence, however, of apparatus or observers upsets the conditions, while above uneven ground or near a tree or a building the equipotential surfaces cease to be horizontal. In an ordinary climate a building seems to be practically at the earth’s potential; near its walls the equipotential surfaces are highly inclined, and near the ridges they may lie very close together. The height of the walls in the various observatories, the height of the collectors, and the distance they project from the wall vary largely, and sometimes there are external buildings or trees sufficiently near to influence the potential. It is thus futile to compare the absolute voltages met with at two stations, unless allowance can be made for the influence of the environment. With a view to this, it has become increasingly common of late years to publish not the voltages actually observed, but values deduced from them for the potential gradient in the open in volts per metre. Observations are made at a given height over level open ground near the observatory, and a comparison with the simultaneous results from the self-recording electrograph enables the records from the latter to be expressed as potential gradients in the open. In the case, however, of many observatories, especially as regards the older records, no data for reduction exist; further, the reduction to the open is at best only an approximation, the success attending which probably varies considerably at different stations. This is one of the reasons why in the figures for the annual and diurnal variations in Tables I., II. and III., the potential has been expressed as percentages of its mean value for the year or the day. In most cases the environment of a collector is not absolutely invariable. If the shape of the equipotential surfaces near it is influenced by trees, shrubs or grass, their influence will vary throughout the year. In winter the varying depth of snow may exert an appreciable effect. There are sources of uncertainty in the instrument itself. Unless the insulation is perfect, the potential recorded falls short of that at the spot where the radium is placed or the water jet breaks. The action of the collector is opposed by the leakage through imperfect insulation, or natural dissipation, and this may introduce a fictitious element into the apparent annual or diurnal variation. The potentials that have to be dealt with are often hundreds and sometimes thousands of volts, and insulation troubles are more serious than is generally appreciated. When a water jet serves as collector, the pressure under which it issues should be practically constant. If the pressure alters as the water tank empties, a discontinuity occurs in the trace when the tank is refilled, and a fictitious element may be introduced into the diurnal variation. When rain or snow is falling, the potential frequently changes rapidly. These changes are often too rapid to be satisfactorily dealt with by an ordinary electrometer, and they sometimes leave hardly a trace on the photographic paper. Again rain dripping from exposed parts of the apparatus may materially affect the record. It is thus customary in calculating diurnal inequalities either to take no account of days on which there is an appreciable rainfall, or else to form separate tables for “dry” or “fine” days and for “all” days. Speaking generally, the exclusion of days of rain and of negative potential comes pretty much to the same thing, and the presence or absence of negative potential is not infrequently the criterion by reference to which days are rejected or are accepted as normal.

4. The potential gradient near the ground varies with the season of the year and the hour of the day, and is largely dependent on the weather conditions. It is thus difficult to form even a rough estimate of the mean value at any place unless hourly readings exist, extending over the whole or the greater part of a year. It is even somewhat precipitate to assume that a mean value deduced from a single year is fairly representative of average conditions. At Potsdam, G. Lüdeling (9) found for the mean value for 1904 in volts per metre 242. At Karasjok in the extreme north of Norway G. C. Simpson (10) in 1903-1904 obtained 139. At Kremsmünster for 1902 P. B. Zölss(11) gives 98. At Kew (12) the mean for individual years from 1898 to