Open main menu
This page has been proofread, but needs to be validated.
164
BACTERIOLOGY

inimical to that of the fungi which are so common on this substratum.

The discoveries that some species of nitrifying bacteria and perhaps pigmented forms are capable of carbon-assimilation, that others can fix free nitrogen and that a number of decompositions hitherto unsuspected are accomplished Function and life of bacteria.by Schizomycetes, have put the questions of nutrition and fermentation in quite new lights. Apart from numerous fermentation processes such as rotting, the soaking of skins for tanning, the preparation of indigo and of tobacco, hay, ensilage, &c., in all of which bacterial fermentations are concerned, attention may be especially directed to the following evidence of the supreme importance of Schizomycetes in agriculture and daily life. Indeed, nothing marks the attitude of modern bacteriology more clearly than the increasing attention which is being paid to useful fermentations. The vast majority of these organisms are not pathogenic, most are harmless and many are indispensable aids in natural operations important to man.

Bacteriology 13.png
Fig. 13.—A series of phases of germination of the spore of B. ramosus sown at 8.30
(to the extreme left), showing how the growth can be measured. If we place the base
of the filament in each case on a base line in the order of the successive times of
observation recorded, and at distances apart proportional to the intervals of time
(8.30, 10.0, 10.30, 11.40, and so on) and erect the straightened-out filaments, the
proportional length of each of which is here given for each period, a line joining the
tips of the filaments gives the curve of growth.  (H. M. W.) 

Fischer has proposed that the old division into saprophytes and parasites should be replaced by one which takes into account other peculiarities in the mode of nutrition of bacteria. The nitrifying, nitrogen-fixing, sulphur- and iron-bacteria he regards as monotrophic, i.e. as able to carry on one particular series of fermentations or decompositions only, and since they require no organic food materials, or at least are able to work up nitrogen or carbon from inorganic sources, he regards them as primitive forms in this respect and terms them Prototrophic. They may be looked upon as the nearest existing representatives of the primary forms of life which first obtained the power of working up non-living into living materials, and as playing a correspondingly important rôle in the evolution of life on our globe. The vast majority of bacteria, on the other hand, which are ordinarily termed saprophytes, are saprogenic, i.e. bring organic material to the putrefactive state—or saprophilous, i.e. live best in such putrefying materials—or become zymogenic, i.e. their metabolic products may induce blood-poisoning or other toxic effects (facultative parasites) though they are not true parasites. These forms are termed by Fischer Metatrophic, because they require various kinds of organic materials obtained from the dead remains of other organisms or from the surfaces of their bodies, and can utilize and decompose them in various ways (Polytrophic) or, if monotrophic, are at least unable to work them up. The true parasites—obligate parasites of de Bary—are placed by Fischer in a third biological group, Paratrophic bacteria, to mark the importance of their mode of life in the interior of living organisms where they live and multiply in the blood, juices or tissues.

When we reflect that some hundreds of thousands of tons of urea are daily deposited, which ordinary plants are unable to assimilate until considerable changes have been undergone, the question is of importance, What happens Nitrogen bacteria.in the meantime? In effect the urea first becomes carbonate of ammonia by a simple hydrolysis brought about by bacteria, more and more definitely known since Pasteur, van Tieghem and Cohn first described them. Lea and Miquel further proved that the hydrolysis is due to an enzyme—urase—separable with difficulty from the bacteria concerned. Many forms in rivers, soil, manure heaps, &c., are capable of bringing about this change to ammonium carbonate, and much of the loss of volatile ammonia on farms is preventible if the facts are apprehended. The excreta of urea alone thus afford to the soil enormous stores of nitrogen combined in a form which can be rendered available by bacteria, and there are in addition the supplies brought down in rain from the atmosphere, and those due to other living débris. The researches of later years have demonstrated that a still more inexhaustible supply of nitrogen is made available by the nitrogen-fixing bacteria of the soil. There are in all cultivated soils forms of bacteria which are capable of forcing the inert free nitrogen to combine with other elements into compounds assimilable by plants. This was long asserted as probable before Winogradsky showed that the conclusions of M. P. E. Berthelot, A. Laurent and others were right, and that Clostridium pasteurianum, for instance, if protected from access of free oxygen by an envelope of aerobic bacteria or fungi, and provided with the carbohydrates and minerals necessary for its growth, fixes nitrogen in proportion to the amount of sugar consumed. This interesting case of symbiosis is equalled by yet another case. The work of numerous observers has shown that the free nitrogen of the atmosphere is brought into combination in the soil in the nodules filled with bacteria on the roots of Leguminosae, and since these nodules are the morphological expression of a symbiosis between the higher plant and the bacteria, there is evidently here a case similar to the last.

As regards the ammonium carbonate accumulating in the soil from the conversion of urea and other sources, we know from Winogradsky’s researches that it undergoes oxidation in two stages owing to the activity of the so-called “nitrifying” bacteria (an unfortunate term inasmuch as “nitrification” refers merely to a particular phase of the cycle of changes undergone by nitrogen). It had long been known that under certain conditions large quantities of nitrate (saltpetre) are formed on exposed heaps of manure, &c., and it was supposed that direct oxidation of the ammonia, facilitated by the presence of porous bodies, brought this to pass. But research showed that this process of nitrification is dependent on temperature, aeration and moisture, as is life, and that while nitre-beds can infect one another, the process is stopped by sterilization. R. Warington, J. T. Schloessing, C. A. Müntz and others had proved that nitrification was promoted by some organism, when Winogradsky hit on the happy idea of isolating the organism by using gelatinous silica, and so avoiding the difficulties which Warington had shown to exist with the organism in presence of organic nitrogen, owing to its refusal to nitrify on gelatine or other nitrogenous media. Winogradsky’s investigations resulted in the discovery that two kinds of bacteria are concerned in nitrification; one of these, which he terms the Nitroso-bacteria, is only capable of bringing about the oxidation of the ammonia to nitrous acid, and the astonishing result was obtained that