Open main menu
This page has been proofread, but needs to be validated.

into extensive use in the United States of America and afterwards in Great Britain. The first roller press was made by the A. I. Root Co. and imported by Mr William Raitt, a Scottish bee-keeper of repute in Perthshire, N.B. In all roller machines used at that time the plain sheets of wax were first made by the “dipping” process, i.e. by repeated dippings of damped boards in molten wax (kept in liquid condition in tanks immersed in hot water) until the sheet was of suitable thickness for the purpose. The prepared sheets were then passed through the rollers, and after being cut out and trimmed were ready for use.

1911 Britannica - Bee - Comb Midrib.png
Fig. 22.—Portion of a type-metal plate—i.e. form of
Comb Midrib (five cells to the inch).
(From Cheshire’s Bees and Bee-keeping Scientific and Practical.)

Owing to the enormous demand for comb-foundation at that time various devices were tried with the view of securing (1) more rapid production, and (2) a foundation thin enough to be used in surplus chambers when working for comb-honey intended for table use. Foremost among the able men who experimented in this latter direction was Mr F. B. Weed, a skilful American machinist, who, after some years of strenuous effort, succeeded in devising and perfecting special rollers and dies, by the use of which foundation was produced with a midrib so thin as to compare favourably with natural comb built by the bees. “Dipping,” however, proved not only a stumbling-block to speed but to the production of continuous sheets of wax; and in the end Mr Weed, acting in concert with Mr A. I. Root (who placed the resources of his enormous factory at his disposal), devised and perfected machinery—driven by motor power—for manufacturing foundation by what is known as the “Weed” process. By this process “dipping” is abolished, and in its latest form sheets of wax of any length are produced, passed between engraved rollers 6 in in diameter, cut to given lengths, trimmed, counted and paper-tissued ready for packing, at a rate of speed previously undreamt of.

1911 Britannica - Bee - Foundation Machine.png
Fig. 23.—Foundation Machine.
(From Cheshire’s Bees and Bee-keeping, Scientific and Practical.)

Practical Management of Bees.—Among the world of insects the honey-bee stands pre-eminent as the most serviceable to mankind; from the day on which the little labourer leaves its home for the first time in search of food, its mission is undoubtedly useful. Launched upon an unknown world, and guided by unerring instinct to the very flowers it seeks, the bee fertilizes fruit and flowers while winging its happy flight among the blossoms, gathering pollen for the nurslings of its own home and honey for the use of man. Nothing seems to be lost, nor can any part of the bee’s work be accounted labour in vain; the very wax from which the insect builds the store-combs for its food and the cells in which its young are hatched and reared is valuable to mankind in many ways, and is regarded today no less than in the past ages as an important commercial product. The hive bee is, moreover, the only insect known to be capable of domestication, so far as labouring under the direct control of the bee-master is concerned, its habits being admirably adapted for embodying human methods of working for profit in our present-day life.

In dealing with the practical side of apiculture it will not be necessary to do more than mention the salient points to be considered by those desirous of acquiring more complete knowledge of the subject. Authoritative text-books specially written for the guidance of bee-keepers are numerous and cheap, and on no account should any one engage in an attempt to manage bees on modern lines without a careful perusal of one or more of these. Bearing this in mind the reader will understand that so much of the natural history of the honey-bee as is necessary for elucidating the practical part of our subject may be comprised in (1) the life of the insect, (2) its mission in life, and (3) utilizing to the utmost the brief period during which it can labour before being worn out with toil.

1911 Britannica - Bee - Hive bee.png
Fig. 24.—Hive bee (Apis mellifica). a, Worker; b, queen; c,
(From Cheshire’s Bees and Bee-keeping, Scientific and Practical.)

A prosperous bee-colony managed on modern lines will in the height of summer consist of three kinds of bees: a queen or mother-bee, a certain number of drones, and from 80,000 to 100,000 workers. With regard to sex, the Sex of bees. queen is a fully-developed female, the drones are males and the workers may be termed neuters or partially developed females. These last possess ovaries like the queen, but shrunken and aborted so as to render the insect normally incapable of egg-production. The relative importance of the three kinds of bees, differs greatly in a degree and in somewhat curious fashion. For instance, the queen (or “king” of the hives as it was termed by our forefathers) is of paramount importance at certain Loss of queens. seasons, her death or disablement during the period when the male element is absent meaning extinction of the whole colony. Fecundation would under such conditions be impossible, and without this the eggs of a resultant queen will produce nothing but drones. During the summer season, however (from May to July), when drones are abundant, the loss of a queen is of comparatively little moment, as the workers can transform eggs (or young larvae not more than three days old), which would in the ordinary course produce worker bees, into fully-developed queens, capable of fulfilling all the maternal duties of a mother-bee. The value of this wonderful provision of nature to the bee-keeper of today may be estimated from the fact that bees managed according to modern methods are necessarily subject to so much manipulating or handling, that fatal accidents are as likely to happen in bee life as among human beings.

Authorities differ with regard to the age during which the queen bee is useful to the bee-keeper who works for profit. Under normal conditions the insect will live for three, four or sometimes five years, but the stimulation given together with