This page has been proofread, but needs to be validated.
ANATOMY]
BRAIN
 395


in the grey matter of the foliated cortex of the hemispheres. It has been noticed that those fibres which are lowest in the pons go to the upper surface of the cerebellum and vice versa.

Histology of the Cerebellum.—The white centre of the cerebellum is composed of numbers of medullated nerve fibres coursing to and from the grey matter of the cortex. These fibres are supported in a groundwork of neuroglial tissue, their nutrition being supplied by a small number of blood vessels.

From Cunningham, Text-book of Anatomy.
Fig. 7.—Transverse Section through a Cerebellar Folium (after Kölliker). Treated by the Golgi method.
P. Axon of cell of Purkinje.
F. Moss fibres.
K and K1. Fibres from white core of folium ending
in molecular layer in connexion with
the dendrites of the cells of Purkinje.
M. Small cell of the molecular layer
GR. Granule cell.
GR1. Axons of granule cells in molecular
layer cut transversely.
M1. Basket-cells.
ZK. Basket-work around the cells of Purkinje.
GL. Neuroglial cell.
N.Axon of an association cell.

The cortex (see fig. 7) consists of a thin layer of grey material forming an outer coat of somewhat varying thickness over the whole external surface of the laminae of the organ. When examined microscopically it is found to be made up of two layers, an outer “molecular” and an inner “granular” layer. Forming a layer lying at the junction of these two are a number of cells, the cells of Purkinje, which constitute the most characteristic feature of the cerebellum. The bodies of these cells are pear-shaped. Their inner ends taper and finally end in a nerve fibre which may be traced into the white centre. In their course through the granule layer they give off a number of branching collaterals, some turning back and passing between the cells of Purkinje into the molecular layer. Their inner ends terminate in one or sometimes two stout processes which repeatedly branch dichotomously, thus forming a very elaborate dendron in the molecular layer. The branchings of this dendron are also highly characteristic in that they are approximately restricted to a single plane like an espalier fruit tree, and those for neighbouring cells are all parallel to one another and at right angles to the general direction of the folium to which they belong. In the molecular layer are found two types of cells. The most abundant are the so-called basket cells which are distributed through the whole thickness of the layer. They have a rounded body giving off many branching dendrons to their immediate neighbourhood and one long neuraxon which runs parallel to the surface and to the long axis of the lamina. In its course, this gives off numerous collaterals which run downward to the bodies of Purkinje’s cells. Their terminal branchings together with similar terminals of other collaterals form the basket-work around the bodies of these cells.

The granular layer is sometimes termed the rust-coloured layer from its appearance to the naked eye. It contains two types of nerve cells, the small granule cells and the large granule cells. The former are the more numerous. They give off a number of short dendrites with claw-like endings, and a fine non-medullated neuraxon process. This runs upward to the cortex, where it divides into two branches in the form of a T. The branches run for some distance parallel to the axis of the folium and terminate in unbranched ends. The large granule cells are multipolar cells, many of the branchings penetrating well into the molecular layer. The neuraxon process turns into the opposite direction and forms a richly branching system through the entire thickness of the granular layer. There is also an abundant plexus of fine medullated fibres within the granule layer.

The fibres of the white central matter are partly centrifugal, the neuraxons of the cells of Purkinje, and partly centripetal. The position of the cells of these latter fibres is not known. The fibres give rise to an abundant plexus of fibrils in the granular layer, and many reaching into the molecular layer ramify there, especially in the immediate neighbourhood of the dendrites of Purkinje’s cells. From the appearance of their plexus of fibrils these are sometimes called moss fibres.

The Fourth Ventricle is the dilated upper end of the central canal of the medulla oblongata. Its shape is like an heraldic lozenge. Its floor is formed by the grey matter of the posterior surfaces of the medulla oblongata and pons, already described (see figs. 3 and 6); its roof partly by the inferior vermis of the cerebellum, the nodule of which projects into its cavity, and partly by a thin layer, called valve of Vieussens, or superior medullary velum; its lower lateral boundaries by the divergent clavae and restiform bodies; its upper lateral boundaries by the superior peduncles of the cerebellum. The inferior medullary velum, a reflection of the pia mater and epithelium from the back of the medulla to the inferior vermis, closes it in below. Above, it communicates with the aqueduct of Sylvius, which is tunnelled below the substance of the corpora quadrigemina. Along the centre of the floor is the median furrow, which terminates below in a pen-shaped form, the so-called calamus scriptorius. Situated on its floor are the fasciculi teretes, striae acusticae, and deposits of grey matter described in connexion with the medulla oblongata. Its epithelial lining is continuous with that of the central canal.

The Cerebrum.

The Cerebrum or Great Brain lies above the plane of the tentorium, and forms much the largest division of the encephalon. It is customary in human anatomy to include under the name of cerebrum, not only the convolutions, the corpora striata, and the optic thalami, developed in the anterior cerebral vesicle, but also the corpora quadrigemina and crura cerebri developed in the mesencephalon or middle cerebral vesicle. The cerebrum is ovoid in shape, and presents superiorly, anteriorly and posteriorly a deep median longitudinal fissure, which subdivides it into two hemispheres. Inferiorly there is a continuity of structure between the two hemispheres across the mesial plane, and if the two hemispheres be drawn asunder by opening out the longitudinal fissure, a broad white band, the corpus callosum, may be seen at the bottom of the fissure passing across the mesial plane from one hemisphere to the other. The outer surface of each hemisphere is convex, and adapted in shape to the concavity of the inner table of the cranial bones; its inner surface, which bounds the longitudinal fissure, is flat and is separated from the opposite hemisphere by the falx cerebri; its under surface, where it rests on the tentorium, is concave, and is separated by that membrane from the cerebellum and pons. From the front of the pons two strong white bands, the crura cerebri or cerebral peduncles, pass forward and upward (see fig. 2). Winding round the outer side of each crus is a flat white band, the optic tract. These tracts converge in front, and join to form the optic commissure, from which the two optic nerves arise. The crura cerebri, optic tracts, and optic commissure enclose a lozenge-shaped space, which includes—(a) a grey layer, which, from being perforated by several small arteries, is called locus perforatus posticus; (b) two white mammillae, the corpora albicantia; (c) a grey nodule, the tuber cinereum, from which (d) the infundibulum projects to join the pituitary body. Immediately in front of the optic commissure is a grey layer, the lamina cinerea of the third ventricle; and between the optic commissure and the inner end of each Sylvian fissure is a grey spot perforated by small arteries, the locus perforatus anticus.

If a transverse section is made at right angles to the surface of the crura cerebri it will pass right through the mesencephalon and come out on the dorsal side through the corpora quadrigemina (see fig. 8). The ventral part of each crus forms the crusta, which is the continuation forward of the anterior pyramidal fibres of the medulla and pons, and is the great motor path from the brain to the cord. Dorsal to this is a layer of pigmented grey matter, called the substantia nigra, and dorsal to this again is the tegmentum, which is a continuation upward of the formatio reticularis of the medulla, and passing through it are seen three important nerve bundles. The superior cerebellar peduncle is the most internal of these and decussates with its fellow of the opposite side so that the two tegmenta are continuous across the middle line. More externally the mesial fillet is seen, while dorsal to the cerebellar peduncle is the posterior longitudinal bundle. If the section happens to pass through the superior corpus quadrigeminum a characteristic circular area appears between the cerebellar peduncle and the fillet, which, from its tint, is called the red nucleus. More dorsally still the section will pass through the Sylvian aqueduct or passage from the third to the fourth ventricle, and this is surrounded by a mass of grey matter in the ventral part of which are the nuclei of the third and fourth