This page has been proofread, but needs to be validated.
  
BREAKING BULK—BREAKWATER
475

is from 12 to 18 in. long by 6 to 8 in. in diameter, and is much eaten by the natives in India. This tree is chiefly valuable on account of its timber, which has a grain very similar to mahogany, and although at first light-coloured it gradually assumes much of the appearance of that wood.


BREAKING BULK, a nautical term for the taking out of a portion of the cargo of a ship, or the beginning to unload; and used in a legal sense for taking anything out of a package or parcel, or in any way destroying its entirety. It was thus important in connexion with the subject of bailment, involving as it did the curious distinction that where a bailee received possession of goods in a box or package, and then sold them as a whole, he was guilty only of a breach of trust, but if he “broke bulk” or caused a separation of the goods, and sold a part or all, he was guilty of felony. This distinction was abolished by the Larceny Act 1861, which enacted that whoever, being a bailee of any chattel, money or valuable security, should fraudulently take or convert the same to his own use, or the use of any person other than the owner, although he should not break bulk or otherwise determine the bailment, should be guilty of larceny (s. 3).


BREAKWATER. When a harbour (q.v.) is proposed to be established on an exposed coast, whether for naval or commercial purposes, to provide a protected approach to a port or river, or to serve as a refuge for vessels from storms, the necessary shelter, so far as it is not naturally furnished by a bay or projecting headlands, has to be secured by the construction of one or more “breakwaters.” These breakwaters, having to prevent the waves that beat upon the coast from reaching the site which they are designed to protect, must be made sufficiently strong to withstand the shocks of the waves during the worst storms to which they are exposed. It is therefore essential, before constructing a breakwater, to investigate most carefully the force, periods and duration of the winds from the quarters to which the work will be exposed, the distance of any sheltering land from the site in the most stormy direction, the slope of the beach and the depth of the sea in the neighbourhood of the shore, and the protection, if any, afforded by outlying shoals or sandbanks. In a tidal sea, the height required for a breakwater is affected by the amount of tidal range; and the extent of breakwater exposed to breaking waves depends upon the difference in level between low and high water. The existence, also, of any drift of sand or shingle along the shore must be ascertained, and its extent; for the projection of a solid breakwater out from the shore is certain to affect this littoral drift, which, if large in amount, may necessitate important modifications in the design for the harbour.

Observations of the force and prevalence of the winds from the different quarters at the various periods of the year, and the instruments by which they are recorded, belong to the science of meteorology; but such records are very valuable to the maritime engineer in indicating from which Winds. directions, open to the sea, the worst storms, and, consequently, the greatest waves, may be expected, and against which the most efficient shelter has to be provided. Moreover, it is necessary, for constructing or repairing a breakwater, to know the period of the year when the calmest weather may be safely anticipated, and also the stormy season during which no work should be attempted, and in preparation for which unfinished works have to be guarded by protective measures. In the parts of the world subject to periodical winds, such as the monsoons, the direction and force of the winds vary with remarkable regularity according to the seasons; and even such uncertain occurrences as hurricanes and cyclones generally visit the regions in their track at definite periods of the year, according to the locality. Even in western Europe, where the winds are extremely variable, violent gales are much more liable to beat upon the western and northern coasts in the winter months than at any other period of the year; whilst the calmest weather may be expected between May and August.

The size of waves depends upon the force of the wind, and the distance along which it blows continuously, in approximately the same direction, over a large expanse of ocean. The greatest waves are, accordingly, encountered where the maximum distance in a certain direction from the nearest land, or, as it is Waves. termed, the “fetch,” coincides with the line travelled by the strongest gales. The dimensions, indeed, of waves in the worst storms depend primarily on the extent of the sea in which they are raised; though in certain seas they are occasionally greatly increased by the exceptional velocities attained by hurricanes and typhoons, which, however, are fortunately restricted to fairly well defined and limited regions. Waves have been found to attain a maximum height of about 10 ft. in the Lake of Geneva, 17 ft. in the Mediterranean Sea, 23 ft. in the Bay of Biscay, and 40 ft. in the Atlantic Ocean; whilst waves of 50 to 60 ft. in height have been observed in the Pacific Ocean off the Cape of Good Hope, where the expanse of sea reaches a maximum, and the exposure to gales is complete. The length of large waves bears no definite relation to their height, and is apparently due, in the long waves often observed in exposed situations, to the combination of several shorter waves in their onward course, which is naturally dependent on the extent of the exposure. Thus waves about 560 ft. in length have been met with during severe gales in the Atlantic Ocean; whilst waves from 600 to 1000 ft. long are regarded as of common occurrence in the Pacific Ocean during storms.

The rate of transmission of the undulation also varies with the exposure; for the ordinary velocity of the apparent travel of waves in storms has been found to amount to about 22 m. an hour in the Atlantic Ocean, and to attain about 27 m. an hour off Cape Horn. The large waves, however, observed in mid-ocean do not reach the coast, because their progress is checked, and their height and length reduced, by encountering the shelving sea-bottom, which diminishes the depth of water on approaching the shore; and the actual waves which have to be arrested by breakwaters depend on the exposure of the site, the existence of continuous deep water close up to the shore, and the depth in which the breakwater is situated. On the other hand, the height, and, consequently, the destructive force of waves, is increased on running up a funnel-shaped bay, by the increasing concentration of the waves in the narrowing width, just as the tidal range of a moderate tidal current is much augmented by its passage up the Bay of Fundy, or up the Bristol Channel into the Severn estuary, or by filling the shallow enclosed bay of St Malo. This effect is intensified when the bay faces the direction of the strongest winds. Thus at Wick a mass of masonry weighing 1350 tons, placed at the head of the breakwater projecting half-way across the bay and facing the entrance, was moved by the waves during a violent storm; and a portion of Peterhead breakwater, weighing 3300 tons, was shifted 2 in. in 1898, indicating a wave-stroke of 2 tons per sq. ft. Southwesterly gales, blowing up the Gulf of Genoa, cause large waves to roll into the bay, reaching a height of about 21 ft. in the worst storms.

Where outlying sandbanks stretch in front of a coast, as for instance the Stroombank in front of Ostend and the adjacent shore, and the sandbanks opposite Yarmouth sheltering Yarmouth Roads, large waves cannot approach the land, for they break on the sandbanks outside. Waves, indeed, always break when, on running up a shoaling beach, they reach a depth approximately equal to their height; and the largest waves which can reach a shore protected by intervening sandbanks, are those which are low enough to pass over the banks without breaking.

The force of the wind, as transmitted by degrees to the sea, is manifested as a series of progressing undulations without any material displacement of the body of water, each undulation transmitting its accumulated force to the next in the direction the wind is blowing, till at last, on encountering an obstacle to its onward course, each wave, no longer finding any water to which to communicate its energy, deals a blow against the obstacle proportionate to its size and rate of transmission; or on reaching shoal water near the shore, the undulation is finally transformed into a breaking wave rushing up the sloping beach.