This page has been proofread, but needs to be validated.
80
BLOOD

In this cleavage the iron is found in the pigment. By the use of a strong acid, it may be made to yield iron-free pigment, the remainder of the molecule being much further decomposed.

Destruction and Formation.—In the performance of their work the corpuscles gradually deteriorate. They are then destroyed, chiefly in the liver, but whether the whole of this process is effected by the liver alone is not decided. It is proved, however, that the destruction of the haemoglobin is entirely effected there. It was for a long time considered to be one of the functions of the spleen to examine the red corpuscles and to destroy or in some way to mark those no longer fitted for the performance of their work. It is proved that the destruction of the haemoglobin is entirely effected in the liver, since both the main cleavage products may be traced to this organ, which discharges the pigmentary portion as the bile pigment, but retains the iron-protein moiety at any rate for a time. The amount of bile pigment eliminated during the day indicates that the destruction must be considerable, and since the number of corpuscles does not vary there must be an equivalent formation of new ones. This takes place in the red bone-marrow, where special cells are provided for their continuous production. In embryonic life their formation is effected in another way. Certain mesodermic cells, resembling those of the connective tissue, collect masses of haemoglobin, and from these elaborate red blood corpuscles which thus come to lie in the fluid part of the cell. By a canalization of the branches of these cells which unite with branches of other cells the precursors of the blood capillaries are formed.

White Blood Corpuscles.—These constitute the second important group of formed elements in the blood, and number about 12,000 to 20,000 per cubic mm. They are typical wandering cells carried to all parts of the body by the blood stream, but often leave that stream and gain the tissue spaces by passing through the capillary wall. They exist in many varieties and were first classified according as, under the microscope, they presented a granular appearance or appeared clear. The cells were also distinguished from one another according as they possessed fine or coarse granules. The granules are confined to the protoplasm of the cell, and it has been shown that they differ chemically, because their staining properties vary. Thus, some granules select an acid stain, and the cells containing them are then designated acidophile or eosinophile;[1] other granules select a basic stain and are called basophile, while yet others prefer a neutral stain (neutrophile).

In human blood the following varieties of leucocytes may be distinguished:—

1. The Polymorphonuclear Cell.—This possesses a nucleus of very complicated outline and a fair amount of protoplasm filled with numbers of fine granules which stain with eosin. They vary in size but are usually about 0.01 mm. in diameter. They are highly amoeboid and phagocytic, and form about 70% of the total number of leucocytes.

2. The Coarsely Granular Eosinophile Cell.—These large cells contain a number of well-defined granules which stain deeply with acid dyes. The nucleus is crescentic. The cells amount to about 2% of the total number of leucocytes, though the proportion varies considerably. They are actively amoeboid.

3. The Lymphocyte.—This is the smallest leucocyte, being only about 0.0065 mm. in diameter. It has a large spherical nucleus with a small rim of clear protoplasm surrounding it. It forms from 15 to 40% of the number of leucocytes, and is less markedly amoeboid than the other varieties.

4. The Hyaline (Gr. ὑάλινος, glassy, crystalline, ὔαλος, glass) cell or macrocyte (Gr. μακρός, long or large).—This is a cell similar to the last with a spherical, oval or indented nucleus, but it has much more protoplasm. It constitutes about 4% of all the leucocytes and is highly amoeboid and phagocytic.

5. The Basophile Cell.—This possesses a spherical nucleus and the protoplasm contains a small number of granules staining deeply with basic dyes. It is rarely found in the blood of adults except in certain diseases.

Functions.—These cells act as scavengers or as destroyers of living organisms that may have gained access to the tissue spaces. They play an important part in the chemical processes underlying the phenomena of immunity, and some at least are of importance in starting the process of clotting.

They are constantly suffering destruction in the performance of their work. Many, too, are lost to the body by their passage through the different mucous surfaces. Their origin is still obscure in many points. The lymphocytes are derived from lymphoid tissue, wherever it exists in the different parts of the body. The polymorphonuclear and eosinophile cells are derived from the bone-marrow, each by division of specific mother cells located in that tissue. The macrocyte is believed by many to represent a further stage in the development of the lymphocyte. Their rate of formation may be influenced by a variety of conditions—for instance, they are found to vary in number according to the diet and also, to a considerable extent, in disease.

Platelets.—The platelets or thrombocytes (Gr. θρόμβος, clot) are the third class of formed elements occurring in mammalian blood. There are still, however, many observers who consider that platelets are not present in the normal circulating blood, but only make their appearance after it has been shed or otherwise injured. They are minute lens-shaped structures, and may amount to as many as 800,000 per cubic mm. Under certain conditions, examination has shown that they are protoplasmic and amoeboid, and that each one contains a central body of different staining properties from the remainder of the structure. This has been regarded by some as a nucleus. On being brought into contact with a foreign surface they adhere to it firmly, very rapidly passing through a number of phases resulting ultimately in the formation of granular debris. In shed blood they tend to collect into groups, and during clotting, fibrin filaments may be observed to shoot out from these clumps.

Variations in the Blood of different Animals.—If we contrast the blood of different animals of the vertebrate class we find striking differences both in microscopic appearances and in chemical properties. In the first place, the corpuscles vary in amount and in kind. Thus, whilst in a mammal the corpuscles form 40 to 50% of the total volume of the blood, in the lower vertebrates the volume is much less, e.g. in frogs as low as 25% and in fishes even lower. The deficiency is chiefly in the red corpuscles, the ratio of white to red increasing as we examine the blood from animals lower in the scale. The corpuscles themselves are also found to vary, especially the red ones. In the mammal they are biconcave disks with bevelled edges, they do not contain a nucleus so that they are not cells. In the bird they are larger, ellipsoidal in shape and have a large nucleus in the centre of the cell. In reptiles and amphibia the red corpuscles are also nucleated, but the stroma portion containing the haemoglobin is arranged in a thickened annular part encircling the nucleus. When seen from the flat they are oval in section. In fishes the corpuscles show very much the same structure. A further very significant difference to be observed between the bloods of different vertebrates is in the amount of haemoglobin they contain; thus in the lower classes, fishes and amphibia, not only is the number of red corpuscles small but the amount of haemoglobin each corpuscle contains is relatively low. The concentration of the haemoglobin in the corpuscles attains its maximum in the mammal and the bird. Since the haemoglobin is practically the same from whatever animal it is obtained and can only combine with the same amount of oxygen, the oxygen-capacity of the blood of any vertebrate is in direct proportion to the amount of haemoglobin it contains. Therefore we see that as we ascend the scale in the vertebrate series the oxygen-carrying capacity of the blood rises. This increase was a natural preliminary condition for the progress of evolution. In order that a more active animal might be developed the main essential was that the chemical processes of the cell should be carried out more rapidly, and as these processes are fundamentally oxidative,

  1. The suffix -phile, Greek φιλεῖν, to love, prefer, is in scientific terminology frequently applied to substances that exhibit such preference for particular stains or reagents, the names of which form the first part of the word.