This page has been proofread, but needs to be validated.
794
CHAETOPODA


zone, and they themselves produce other buds, so that a ramifying colony is created.

Fig. 5.—A, Autolytus (after Mensch) with numerous buds. B, Portion of a colony of Syllis ramosa (from M‘Intosh). b.z, Budding zone; p, anterior region of the parent worm; 1-5, buds.

Quite recently, another mode of budding has been described in Trypanosyllis gemmipara, where a crowd of some fifty buds arising symmetrically are produced at the tail end of the worm. In some Syllids, such as Pionosyllis gestans, the ova are attached to the body of the parent in a regular line, and develop in situ; this process, which has been attributed to budding, is an “external gestation,” and occurs in a number of species.

Fig. 6.—A, Side view of the larva of Lopadorhynchus (from Kleinenberg), showing the developing trunk region. B, Side view of the trochophore larva of Eupomatus uncinatus (from Hatschek).
A, Anus.
E, Eye.
M, Mouth.
ap, Apical organ.
h, “Head Kidney.”
i,  Intestine.
me, Mesoblast.
ms, Larval muscle.
o,  Otocyst.
pp, Parapodium.
pr, Praeoral ciliated ring, or prototroch.
Fig. 7.—Nereis pelagica, L. (After Oersted.)

As is very frequently the case with marine forms, as compared with their fresh-water and terrestrial allies, the Polychaeta differ from the Oligochaeta and Hirudinea in possessing a free living larval form which is hatched at an early stage in development. This larva is termed the Trochosphere larva, and typically (as it is held) is an egg-shaped larva with two bands of cilia, one preoral and one postoral, with an apical nervous plate surmounted by a tuft of longer cilia, and with a simple bent alimentary canal, with lateral mouth and posterior anus, between which and the ectoderm is a spacious cavity (blastocoel) traversed by muscular strands and often containing a larval kidney. The segmentation is of the mesoblast to begin with, and appears later behind the mouth, the part anterior to this becoming the prostomium of the adult. The chief modifications of this form are seen in the Mitraria larva of Ammochares with only the preoral band, which is much folded and which has provisional and long setae; the atrochous larva, where the covering of cilia is uniform and not split into bands; and the polytrochous larva where there are several bands surrounding the body. There are also other modifications.

Classification.—The older arrangement of the Polychaeta into Errantia or free living and Tubicola or tube-dwelling forms will hardly fit the much increased knowledge of the group. W. B. Benham’s division into Phanerocephala in which the prostomium is plain, and Crytocephala in which the prostomium is hidden by the peristomium adopted by Sedgwick, can only be justified by the character used; for the Terebellids, though phanerocephalous, have many of the features of the Sabellids. It is perhaps safer to subdivide the Order into 6 Suborders (in the number of these following Benham, except in combining the Sabelliformia and Hermelliformia). Of these 6, the two first to be considered are very plainly separable and represent the extremes of Polychaete organization, (1) Nereidiformia.—“Errant” Polychaetes with well-marked prostomium possessing tentacles and palps with evident and locomotor parapodia, supported (with few exceptions) by strong spines, the aciculi; muscular pharynx usually armed with jaws; septa and nephridia regularly metameric and similar throughout body; free living and predaceous. (2) Cryptocephala.—Tube-dwelling with body divided into thorax and abdomen marked by the setae, which are reversed in position in the neuropodium and notopodium respectively in the two regions. Parapodia hardly projecting; palps of prosomium forming branched gills; no pharynx or eversible buccal region; no septa in thorax, septa in abdomen regularly disposed. Nephridia in two series; large, anterior nephridia followed by small, short tubes in abdomen. The remaining groups are harder to define, with the exception of the (3) Capitelliformia, which are mud-living worms of an “oligochaetous” appearance, and with some affinities to that order. The peristomium has no setae, and the setae generally are hair-like or uncinate, often forming almost complete rings. The genital ducts are limited to one segment (the 8th in Capitella capitata), and there are genital setae on this and the next segment. In other forms genital ducts and nephridia coexist in the same segment.

Fig. 8.—Sabella vesiculosa, Mont.
(After Montagu.)
Fig. 9.
Arenicola marina, L.

The nephridia are sometimes numerous in each segment. There is no blood system, and the coelomic corpuscles contain