This page has been proofread, but needs to be validated.
  
COELOM
643

attachments. After surrounding the small intestine it becomes the posterior layer of the mesentery and so again reaches the posterior abdominal wall, down which it runs until the rectum (R) is reached. The anterior surface of this tube is covered by peritoneum to a point about 3 in. from the anus, where it is reflected on to the uterus and vagina (V) in the female and then on to the bladder (B); in the male, on the other hand, the reflection is directly from the rectum to the bladder. At the apex of the bladder, after covering the upper surface of that organ, it is lifted off by the urachus and runs up the anterior abdominal wall to the umbilicus, from which the start was made. All this is the greater sac. The tracing of the lesser sac may be conveniently started at the transverse fissure of the liver, whence the membrane runs down to the stomach (St) as the posterior layer of the lesser omentum, lines the posterior surface of the stomach, passes down as the second layer of the great omentum and up again as the third layer, covers the anterior surface of the transverse colon (C) and then reaches the pancreas (P) as the anterior layer of the transverse mesocolon. After this it covers the front of the pancreas and in the middle line of the body runs up below the diaphragm to within an inch of the anterior layer of the coronary ligament of the liver; here it is reflected on to the top of the Spigelian lobe of the liver to form the posterior layer of the coronary ligament, covers the whole Spigelian lobe, and so reaches the transverse fissure, the starting-point.

Fig. 2.—Diagram of Horizontal Section through
upper part of 1st Lumbar Vertebra.
A,Aorta. H.A, Hepatic Artery.
Sp,Spleen. K,  Kidney.
B.D, Bile duct. L,  Liver.
V.C, Vena Cava. St,Stomach.
P,Pancreas. P.V, Portal Vein.
The dotting of the peritoneum is as in fig. 1.

This section, therefore, shows two completely closed sacs without any visible communication. In the female, however, the great sac is not absolutely closed, for the Fallopian tubes open into it by their minute ostia abdominalia, while at the other ends they communicate with the cavity of the uterus and so with the vagina and exterior.

A horizontal section through the upper part of the first lumbar vertebra will, if a fortunate one (see fig. 2), pass through the foramen of Winslow and show the communication of the two sacs. A starting-point may be made from the mid-ventral line and the parietal peritoneum traced round the left side of the body wall until the outer edge of the left kidney (K) is reached; here it passes in front of the kidney and is soon reflected off on to the spleen, which it nearly surrounds; just before it reaches the hilum of that organ, where the vessels enter, it is reflected on to the front of the stomach (St), forming the anterior layer of the gastro-splenic omentum; it soon reaches the lesser curvature of the stomach and then becomes the anterior layer of the lesser omentum, which continues until the bile duct (B.D) and portal vein (P.V) are reached at its right free extremity; here it turns completely round these structures and runs to the left again, as the posterior layer of the lesser omentum, behind the stomach (St) and then to the spleen (Sp) as the posterior layer of the gastro-splenic omentum. From the spleen it runs to the right once more, in front of the pancreas (P), until the inferior vena cava (V.C) is reached, and this point is just behind the portal vein and is the place where the lesser and greater sacs communicate, known as the foramen of Winslow. From this opening the lesser sac runs to the left, while all the rest of the peritoneal cavity in the section is greater sac. From the front of the vena cava the parietal peritoneum passes in front of the right kidney (K) and round the right abdominal wall to the mid-ventral line. The right part of this section is filled by the liver (L), which is completely surrounded by a visceral layer of peritoneum, and no reflection is usually seen at this level between it and the parietal layer. Some of the viscera, such as the kidneys and pancreas, are retro-peritoneal; others, such as the small intestines and transverse colon, are surrounded, except at one point where they are attached to the dorsal wall by a mesentery or mesocolon as the reflections are called; others again are completely surrounded, and of these the caecum is an example; while some, like the liver and bladder, have large uncovered areas, and the reflections of the membrane form ligaments which allow considerable freedom of movement.

The tunica vaginalis is the remains of a process of the peritoneum (processus vaginalis) which descends into the scrotum during foetal life some little time before the testis itself descends. After the descent of the testis the upper part usually becomes obliterated, while the lower part forms a serous sac which nearly surrounds the testis, but does not quite do so. Posteriorly the epididymis is in close contact with the testis, and here the visceral layer is not in contact; there is, however, a pocket called the digital fossa which squeezes in from the outer side between the testis and epididymis. The parietal layer lines the inner wall of its own side of the scrotum.

For a full description of the topography of the serous membranes see any of the standard text-books of anatomy, by Gray, Quain, Cunningham or Macalister. Special details will be found in Sir F. Treves’ Anatomy of the Intestinal Canal and Peritoneum (London, 1885); C. B. Lockwood, Hunterian Lectures on Hernia (London, 1889); C. Addison, “Topographical Anatomy of the Abdominal Viscera in Man,” Jour. Anat., vols. 34, 35; F. Dixon and A. Birmingham, “Peritoneum of the Pelvic Cavity,” Jour. Anat. vol. 34, p. 127; W. Waldeyer, “Das Becken” (1899), and “Topographical Sketch of the Lateral Wall of the Pelvic Cavity,” Jour. Anat. vol. 32; B. Moynihan, Retroperitoneal Hernia (London, 1899). A complete bibliography of the subject up to 1895 will be found in Quain’s Anatomy, vol. 3, part 4, p. 69.

After Young and Robinson, Cunningham’s Text-Book of Anatomy.
Fig. 3.—Diagram of Longitudinal Section, showing the different
areas of the Blastodermic Vesicle.
a, Pericardium. c, Ectoderm. e, Placental area.
b, Bucco-pharyngeal area. d, Entoderm.  

 

After Young and Robinson, Cunningham’s Text-Book of Anatomy.
Fig. 4.—Diagram of a Developing Ovum, seen in Longitudinal Section.
f,Spinal cord. i,Brain.
g, Notochord. k, Extra embryonic coelom.
h, Dorsal wall of alimentary canal.   Other numbers as in fig. 3.

Embryology.—As the mesoderm is gradually spreading over the embryo it splits into two layers, the outer of which is known as the somatopleure and lines the parietal or ectodermal wall, while the inner lines the entoderm and is called the splanchnopleure; between the two is the coelom. The pericardial area is early differentiated from the rest of the coelom and at first lies in front of the neural and bucco-pharyngeal area; here the mesoderm stretches right across the mid-line, which it does not in front and behind. As the head fold of the embryo is formed the pericardium is gradually turned right over, so that the dorsal side becomes the ventral and the anterior limit the posterior; this will be evident on referring to the two accompanying diagrams.

The two primitive aortae lie at first in the ventral wall of the