This page has been validated.
  
DUCTLESS GLANDS
635

children than in the adult male. It is enclosed in a capsule of cervical fascia and is supplied by the superior and inferior thyroid arteries on each side, though occasionally a median thyroidea ima artery is present. On microscopical examination the gland shows a large number of closed tubular alveoli, lined by columnar epithelial cells, unsupported by a basement membrane, and filled with colloid or jelly-like material. These are supported by fibrous septa growing in from the true capsule, which is distinct from the capsule of cervical fascia. The lymphatic vessels are large and numerous, and have been shown by E. C. Baber (Phil. Trans., 1881) to contain the same colloid material as the alveoli. Accessory thyroids, close to the main gland, are often found.

Embryology.—The median part of the gland is developed from a tube which grows down in the middle line from the junction of the buccal and pharyngeal parts of the tongue (q.v.), between the first and second branchial arches. This tube is called the thyro-glossal duct and is entodermal in origin. The development of the hyoid bone obliterates the middle part of the duct, leaving its upper part as the foramen caecum of the tongue, while its lower part bifurcates, and so the asymmetrical arrangement of the pyramidal lobe is accounted for. A. Kanthack (J. Anat. and Phys. vol. xxv., 1891) has denied the existence of this duct, but on slender grounds. The lateral parts of the gland are developed from the entoderm of the fourth visceral clefts, and, joining the median part, lose their pharyngeal connexion. Nearly, but not quite, the whole of the lateral lobes probably belong to this part. (For literature and further details see Quain’s Anatomy, London, 1892, and J. P. McMurrich’s Development of the Human Body, London, 1906.)

Comparative Anatomy.—The endostyle or hypobranchial groove of Tunicata (sea squirts) and Acrania (Amphioxus) is regarded as the first appearance of the median thyroid; this is a median entodermal groove in the floor of the pharynx, secreting a glairy fluid in which food particles become entangled and so pass into the intestine. In the larval lamprey (Ammocoetes) among the Cyclostomata the connexion with the pharynx is present, but in the adult lamprey (Petromyzon), as in all adult vertebrates, this connexion is lost. In the Elasmobranchs the single median thyroid lies close to the mandibular symphysis, but in the bony fish (Teleostei) it is paired. In the mud fish (Dipnoi) there is also an indication of a division into two lobes. In the Amphibia the thyroid forms numerous vesicles close to the anterior end of the pericardium. In Reptilia it lies close to the trachea, and in the Chelonia and Crocodilia is paired. In birds it is also paired and lies near the origin of the carotid arteries. In Mammalia the lateral lobes make their first appearance. In the lower orders of this class the isthmus is often absent. (For further details and literature see R. Wiedersheim’s Vergleichende Anatomie der Wirbeltiere, Jena, 1902, and also for literature, Quain’s Anatomy, London, 1896.)

Parathyroid Glands

These little oval bodies, of considerable physiological importance, are two in number on each side. From their position they are spoken of as postero-superior and antero-inferior; the postero-superior are embedded in the thyroid at the level of the lower border of the cricoid cartilage, while the antero-inferior may be embedded in the lower edge of the lateral lobes of the thyroid or may be found a little distance below in relation to the inferior thyroid veins. They are often very difficult to find, but it is easiest to do so in a perfectly fresh, full-term foetus or young child. Microscopically they consist of solid masses of epithelioid cells with numerous blood-vessels between, while, embedded in their periphery, are often found masses of thymic tissue including the concentric corpuscles of Hassall. They have been regarded as undeveloped portions of thyroid tissue in an embryonic state, but the experiments of Gley (Comptes rendus de la Soc. de Biol. No. 11, 1895) and of W. Edmunds (Proc. Physiol. Soc.—Journ. Phys. vol. xviii., 1895) do not confirm this. They are developed from the entoderm of the third and fourth branchial grooves.

Parathyroids have been found in the orders of Primates, Cheiroptera, Carnivora, Ungulata and Rodentia among the Mammalia, and also in Birds. In the other classes of vertebrates little is known of them. The fullest and most recent account of these bodies is that of D. A. Welsh in Journ. Anat. and Phys. vol. 32, 1898, pp. 292 and 380.

The Thymus Gland

The thymus gland (Gr. θύμος, from a fancied resemblance to the corymbs of the Thyme) is a light pink gland, consisting of two unequal lobes, which lies in the superior and anterior mediastina of the thorax in front of the pericardium and great vessels; it also extends up into the root of the neck to within a short distance of the thyroid gland. It continues to grow until the second year of life, after which it remains stationary until puberty, when it usually degenerates rapidly. The writer has seen it perfectly well developed in a man between 40 and 50, though such cases are rare; probably, however, some patches of its tissue remain all through life. Each lobe is divided into a large number of lobules divided by areolar tissue, and each of these, under the microscope, is seen to consist of a cortical and medullary part. The cortex is composed of lymphoid tissue and resembles the structure of a lymphatic gland (see Lymphatic System); it is imperfectly divided into a number of follicles. In the medulla the lymphoid cells are fewer, and nests of epithelial cells are found, called the concentric corpuscles of Hassall. The vascular supply is derived from all the vessels in the neighbourhood, the lymphatics are very large and numerous, but the nerves, which come from the sympathetic and vagus, are few and small. H. Watney (Phil. Trans., 1882) has discovered haemoglobin, and apparently developing red blood corpuscles, in the thymus. (For further details see Gray’s or Quain’s Anatomy.)

Embryology.—The thymus is formed from a diverticulum, on each side, from the entoderm lining the third branchial groove, but the connexion with the pharynx is soon lost. The lymphoid cells and concentric corpuscles are probably the derivatives of the original cells lining the diverticulum.

Comparative Anatomy.—The thymus is always a paired gland. In most fishes it rises from the dorsal part of all five branchial clefts; in Lepidosiren (Dipnoi), from all except the first; in Urodela from 3rd, 4th and 5th, and in Anura from the 2nd only (see T. H. Bryce, “Development of Thymus in Lepidosiren,” Journ. Anat. and Phys. vol. 40, p. 91). In all fishes, including the Dipnoi (mud fish) it is placed dorsally to the gill arches on each side. In the Amphibia it is found close to the articulation of the mandible. In the Reptilia it is situated by the side of the carotid artery; but in young crocodiles it is lobulated and extends all along the neck, as it does in birds, lying close to the side of the oesophagus. In Mammals the Marsupials are remarkable for having a well-developed cervical as well as thoracic thymus (J. Symington, J. Anat. and Phys. vol. 32, p. 278). In some of the lower mammals the gland does not disappear as early as it does in man. The thymus of the calf is popularly known as “the chest sweetbread.”

Carotid Bodies

These are two small bodies situated, one on each side, between the origins of the external and internal carotid arteries. Microscopically they are divided into nodules or cell balls by connective tissue, and these closely resemble the structure of the parathyroids, but are without any thymic tissue. The blood-vessels in their interior are extremely large and numerous. The modern view of their development is that they are part of the sympathetic system, and the reaction of their cells to chromium salts bears this out. (See Kohn, Archiv f. mikr. Anat. lxx., 1907.)

In the Anura there is a rete or network into which the carotid artery breaks up in the position of the carotid body, and this has an important effect on the course of the circulation. It is probable, however, that this structure has nothing to do with the carotid body of Mammalia.

Coccygeal Body

This is a small median body, about the size of a pea, situated in front of the apex of the coccyx and between the insertions of the levatores ani muscles. It resembles the carotid body in its microscopical structure, but is not so vascular. Concentric corpuscles, like those of the thymus, have been recorded in it. It derives its arteries from the middle sacral and its nerves from the sympathetic. Of its embryology and comparative anatomy little is known, though J. W. Thomson Walker has recently shown that numerous, outlying, minute masses of the same structure lie along the course of the middle sacral artery (Archiv f. mikroscop. Anat. Bd. lxiv.). The probability is that, like the carotid body, it is sympathetic in origin. (Quain’s Anatomy gives excellent illustrations of the histology of this as well as of all the other ductless glands.)

For the literature on and further details concerning the foregoing structures the following works should be consulted: Quain’s