This page has been proofread, but needs to be validated.
ELECTROMAGNETISM
231


37, p. 723). These experiments showed that over moderate ranges of induction, such as may be expected in electro-technical work, the hysteresis loss per cycle per cubic centimetre was practically the same when the iron was tested in an alternating field with a periodicity of 100, the field remaining constant in direction, and when the iron was tested in a rotating field giving the same maximum flux density.

With respect to the variation of hysteresis loss in magnetic cycles having different maximum values for the flux density, Steinmetz found that the hysteresis loss (W), as measured by the area of the complete (B, H) cycle and expressed in ergs per centimetre-cube per cycle, varies proportionately to a constant called the hysteretic constant, and to the 1.6th power of the maximum flux density (B), or W = ηB1.6.

The hysteretic constants (η) for various kinds of iron and steel are given in the table below:—

Metal. Hysteretic Constant.
Swedish wrought iron, well annealed .0010 to .0017
Annealed cast steel of good quality; small  
  percentage of carbon .0017 to .0029
Cast Siemens-Martin steel .0019 to .0028
Cast ingot-iron .0021 to .0026
Cast steel, with higher percentages of carbon,  
  or inferior qualities of wrought iron .0031 to .0054

Steinmetz’s law, though not strictly true for very low or very high maximum flux densities, is yet a convenient empirical rule for obtaining approximately the hysteresis loss at any one maximum flux density and knowing it at another, provided these values fall within a range varying say from 1 to 9000 C.G.S. units. (See Magnetism.)

The standard maximum flux density which is adopted in electro-technical work is 2500, hence in the construction of the cores of alternating-current electromagnets and transformers iron has to be employed having a known hysteretic constant at the standard flux density. It is generally expressed by stating the number of watts per ℔ of metal which would be dissipated for a frequency of 100 cycles, and a maximum flux density (B max.) during the cycle of 2500. In the case of good iron or steel for transformer-core making, it should not exceed 1.25 watt per ℔ per 100 cycles per 2500 B (maximum value).

It has been found that if the sheet iron employed for cores of alternating electromagnets or transformers is heated to a temperature somewhere in the neighbourhood of 200° C. the hysteresis loss is very greatly increased. It was noticed in 1894 by G. W. Partridge that alternating-current transformers which had been in use some time had a very considerably augmented core loss when compared with their initial condition. O. T. Bláthy and W. M. Mordey in 1895 showed that this augmentation in hysteresis loss in iron was due to heating. H. F. Parshall investigated the effect up to moderate temperatures, such as 140° C., and an extensive series of experiments was made in 1898 by S. R. Roget (Proc. Roy. Soc., 1898, 63, p. 258, and 64, p. 150). Roget found that below 40° C. a rise in temperature did not produce any augmentation in the hysteresis loss in iron, but if it is heated to between 40° C. and 135° C. the hysteresis loss increases continuously with time, and this increase is now called “ageing” of the iron. It proceeds more slowly as the temperature is higher. If heated to above 135° C., the hysteresis loss soon attains a maximum, but then begins to decrease. Certain specimens heated to 160° C. were found to have their hysteresis loss doubled in a few days. The effect seems to come to a maximum at about 180° C. or 200° C. Mere lapse of time does not remove the increase, but if the iron is reannealed the augmentation in hysteresis disappears. If the iron is heated to a higher temperature, say between 300° C. and 700° C., Roget found the initial rise of hysteresis happens more quickly, but that the metal soon settles down into a state in which the hysteresis loss has a small but still augmented constant value. The augmentation in value, however, becomes more nearly zero as the temperature approaches 700° C. Brands of steel are now obtainable which do not age in this manner, but these non-ageing varieties of steel have not generally such low initial hysteresis values as the “Swedish Iron,” commonly considered best for the cores of transformers and alternating-current magnets.

The following conclusions have been reached in the matter:—(1) Iron and mild steel in the annealed state are more liable to change their hysteresis value by heating than when in the harder condition; (2) all changes are removed by re-annealing; (3) the changes thus produced by heating affect not only the amount of the hysteresis loss, but also the form of the lower part of the (B, H) curve.

Forms of Electromagnet.—The form which an electromagnet must take will greatly depend upon the purposes for which it is to be used. A design or form of electromagnet which will be very suitable for some purposes will be useless for others. Supposing it is desired to make an electromagnet which shall be capable of undergoing very rapid changes of strength, it must have such a form that the coercivity of the material is overcome by a self-demagnetizing force. This can be achieved by making the magnet in the form of a short and stout bar rather than a long thin one. It has already been explained that the ends or poles of a polar magnet exert a demagnetizing power upon the mass of the metal in the interior of the bar. If then the electromagnet has the form of a long thin bar, the length of which is several hundred times its diameter, the poles are very far removed from the centre of the bar, and the demagnetizing action will be very feeble; such a long thin electromagnet, although made of very soft iron, retains a considerable amount of magnetism after the magnetizing force is withdrawn. On the other hand, a very thick bar very quickly demagnetizes itself, because no part of the metal is far removed from the action of the free poles. Hence when, as in many telegraphic instruments, a piece of soft iron, called an armature, has to be attracted to the poles of a horseshoe-shaped electromagnet, this armature should be prevented from quite touching the polar surfaces of the magnet. If a soft iron mass does quite touch the poles, then it completes the magnetic circuit and abolishes the free poles, and the magnet is to a very large extent deprived of its self-demagnetizing power. This is the explanation of the well-known fact that after exciting the electromagnet and then stopping the current, it still requires a good pull to detach the “keeper”; but when once the keeper has been detached, the magnetism is found to have nearly disappeared. An excellent form of electromagnet for the production of very powerful fields has been designed by H. du Bois (fig. 6).

Fig. 6.—Du Bois’s Electromagnet.

Various forms of electromagnets used in connexion with