This page needs to be proofread.
FUNCTION
319

To prove the last of these results, we write, for |z| < |Ω|,

1 1 = 2z + 3z2 + ...,
(zΩ)2 Ω2 Ω3 Ω4

and hence, if ΣΩ−2n = σn, since ΣΩ−(2n−1) = 0, we have, for sufficiently small z greater than zero,

ƒ(z) = z−2 + 3σ2·z2 + 5σ3·z4 + ...

and

φ(z) = −2z−3 + 6σ2·z + 20σ3·z3 + ...;

using these series we find that the function

F(z) = [φ(z)]2 − 4[ƒ(z)]3 + 60σ2ƒ(z) + 140σ3

contains no negative powers of z, being equal to a power series in z2 beginning with a term in z2. The function F(z) is, however, doubly periodic, with periods ω, ω′, and can only be infinite when either ƒ(z) or φ(z) is infinite; this follows from its form in ƒ(z) and φ(z); thus in one parallelogram of periods it can be infinite only when z = 0; we have proved, however, that it is not infinite, but, on the contrary, vanishes, when z = 0. Being, therefore, never infinite for finite values of z it is a constant, and therefore necessarily always zero. Putting therefore ƒ(z) = ζ and φ(z) = dζ/dz we see that

dz = (4ζ3 − 60σ2ζ − 140σ3)−1/2.
dζ

Historically it was in the discussion of integrals such as

∫ dζ (4ζ3 − 60σ2·ζ − 140σ3)−1/2,

regarded as a branch of Integral Calculus, that the doubly periodic functions arose. As in the familiar case

z = ζ0 (1 − ζ2)−1/2 dζ,

where ζ = sin z, it has proved finally to be simpler to regard ζ as a function of z. We shall come to the other point of view below, under § 20, Elliptic Integrals.

To prove that any doubly periodic function F(z) with periods ω, ω′, having poles at the points z = a1, ... z = am of a parallelogram, these being, for simplicity of explanation, supposed to be all of the first order, is rationally expressible in terms of φ(z) and ƒ(z), and we proceed as follows:—

Consider the expression

Φ(z) = (ζ, 1)m + η(ζ, 1)m−2
(ζ − A1) (ζ − A2)...(ζ − Am)

where As = ƒ(as), ζ is an abbreviation for ƒ(z) and η for φ(z), and (ζ, 1)m, (ζ, 1)m−2, denote integral polynomials in ζ, of respective orders m and m − 2, so that there are 2m unspecified, homogeneously entering, constants in the numerator. It is supposed that no one of the points a1, ... am is one of the points mω + mω′ where ƒ(z) = ∞. The function Φ(z) is a monogenic function of z with the periods ω, ω′, becoming infinite (and having singularities) only when (1) ζ = ∞ or (2) one of the factors ζ-As is zero. In a period parallelogram including z = 0 the first arises only for z = 0; since for ζ = ∞, η is in a finite ratio to ζ3/2; the function Φ(z) for ζ = ∞ is not infinite provided the coefficient of ζm in (ζ, 1)m is not zero; thus Φ(z) is regular about z = 0. When ζ − As = 0, that is ƒ(z) = ƒ(as), we have z = ±as + mω + mω′, and no other values of z, m and m′ being integers; suppose the unspecified coefficients in the numerator so taken that the numerator vanished to the first order in each of the m points −a1, −a2, ... −am; that is, if φ(as) = Bs, and therefore φ(−as) = −Bs, so that we have the m relations

(As, 1)m − Bs(As, 1)m−2 = 0;

then the function Φ(z) will only have the m poles a1, ... am. Denoting further the m zeros of F(z) by a1′, ... am′, putting ƒ(as′) = As′, φ(as′) = Bs′, suppose the coefficients of the numerator of Φ(z) to satisfy the further m − 1 conditions

(As′, 1)m + Bs′ (As′, 1)m−2 = 0

for s = 1, 2, ... (m − 1). The ratios of the 2m coefficients in the numerator of Φ(z) can always be chosen so that the m + (m − 1) linear conditions are all satisfied. Consider then the ratio

F(z) / Φ(z);

it is a doubly periodic function with no singularity other than the one pole am′. It is therefore a constant, the numerator of Φ(z) vanishing spontaneously in am′. We have

F(z) = AΦ(z),

where A is a constant; by which F(z) is expressed rationally in terms of ƒ(z) and φ(z), as was desired.

When z = 0 is a pole of F(z), say of order r, the other poles, each of the first order, being a1, ... am, similar reasoning can be applied to a function

(ζ, 1)h + η(ζ, 1)k ,
(ζ − A1) ... (ζ − Am)

where h, k are such that the greater of 2h − 2m, 2k + 3 − 2m is equal to r; the case where some of the poles a1, ... am are multiple is to be met by introducing corresponding multiple factors in the denominator and taking a corresponding numerator. We give a solution of the general problem below, of a different form.

One important application of the result is the theorem that the functions ƒ(z + t), φ(z + t), which are such doubly periodic function of z as have been discussed, can each be expressed, so far as they depend on z, rationally in terms of ƒ(z) and φ(z), and therefore, so far as they depend on z and t, rationally in terms of ƒ(z), ƒ(t), φ(z) and φ(t). It can in fact be shown, by reasoning analogous to that given above, that

ƒ(z + t) + ƒ(z) + ƒ(t) = 1/4 [ φ(z) − φ(t) ] 2.
ƒ(z) − ƒ(t)

This shows that if F(z) be any single valued monogenic function which is doubly periodic and of meromorphic character, then F(z + t) is an algebraic function of F(z) and F(t). Conversely any single valued monogenic function of meromorphic character, F(z), which is such that F(z + t) is an algebraic function of F(z) and F(t), can be shown to be a doubly periodic function, or a function obtained from such by degeneration (in virtue of special relations connecting the fundamental constants).

The functions ƒ(z), φ(z) above are usually denoted by ℜ(z), ℜ′(z); further the fundamental differential equation is usually written

(ℜ′z)2 = 4(ℜz)3g2zg3,

and the roots of the cubic on the right are denoted by e1, e2, e3; for the odd function, ℜ′z, we have, for the congruent arguments −1/2ωand 1/2ω, ℜ′ (1/2ω) = −ℜ′ (−1/2ω) = −ℜ′ (1/2ω), and hence ℜ′ (1/2ω) = 0; hence we can take e1 = ℜ (1/2ω), e2 = ℜ (1/2ω + 1/2ω′), e3 = ℜ (1/2ω). It can then be proved that [ℜ(z) − e1] [ℜ (z + 1/2ω) − e1] = (e1e2) (e1e3), with similar equations for the other half periods. Consider more particularly the function ℜ(z) − e1; like ℜ(z) it has a pole of the second order at z = 0, its expansion in its neighbourhood being of the form z−2 (1 − e1z2 + Az4 + ...); having no other pole, it has therefore either two zeros, or a double zero in a period parallelogram (ω, ω′). In fact near its zero 1/2ω its expansion is (x − 1/2ω) ℜ′ (1/2ω) + 1/2(z1/2ω)2 ℜ″ (1/2ω) + ...; we have seen that ℜ′ (1/2ω) = 0; thus it has a zero of the second order wherever it vanishes. Thus it appears that the square root [ℜ(z) − e1]1/2, if we attach a definite sign to it for some particular value of z, is a single valued function of z; for it can at most have two values, and the only small circuits in the plane which could lead to an interchange of these values are those about either a pole or a zero, neither of which, as we have seen, has this effect; the function is therefore single valued for any circuit. Denoting the function, for a moment, by ƒ1(z), we have ƒ1(z + ω) = ±ƒ1(z), ƒ1(z + ω′) = ±ƒ1(z); it can be seen by considerations of continuity that the right sign in either of these equations does not vary with z; not both these signs can be positive, since the function has only one pole, of the first order, in a parallelogram (ω, ω′); from the expansion of ƒ1(z) about z = 0, namely z− 1 (1 − 1/2e1z2 + ...), it follows that ƒ1(z) is an odd function, and hence ƒ1 (−1/2ω′) = −ƒ1 (1/2ω′), which is not zero since [ƒ1 (1/2ω′)]2 = e3e1, so that we have ƒ1 (z + ω′) = −ƒ1(z); an equation f1(z + ω) = −ƒ1(z) would then give ƒ1(z + ω + ω′) = ƒ1(z), and hence ƒ1(1/2ω + 1/2ω′) = ƒ1(−1/2ω1/2ω′), of which the latter is −ƒ1(1/2ω + 1/2ω′); this would give ƒ1(1/2ω + 1/2ω′) = 0, while [ƒ1(1/2ω + 1/2ω′)]2 = e2e1. We thus infer that ƒ1(z + ω) = ƒ1(z), ƒ1(z + ω′) = −ƒ1(z), ƒ1(z + ω + ω′) = −ƒ1(z). The function ƒ1(z) is thus doubly periodic with the periods ω and 2ω′; in a parallelogram of which two sides are ω and 2ω′ it has poles at z = 0, z = ω′ each of the first order, and zeros of the first order at z = 1/2ω, z = 1/2ω + ω′; it is thus a doubly periodic function of the second order with two different poles of the first order in its parallelogram (ω, 2ω′). We may similarly consider the functions ƒ2(z) = [ℜ(z) − e2]1/2, ƒ3(z) = [ℜ(z) − e3]1/2; they give

ƒ2(z + ω + ω′) = ƒ2(z), ƒ2(z + ω) = −ƒ2(z), ƒ2(z + ω′) = −ƒ2(z), ƒ3(z + ω′) = ƒ3z, ƒ3(z + ω) = −ƒ3(z), ƒ3(z + ω + ω′) = −ƒ3(z).

Taking u = z (e1e3)1/2, with a definite determination of the constant (e1e3)1/2, it is usual, taking the preliminary signs so that for z = 0 each of zƒ1(z), zƒ2(z), zƒ3(z) is equal to +1, to put

sn(u) = (e1e3)1/2 ,  cn(u) = ƒ1(z) ,  dn(u) = f2(z) ,
ƒ3(z) ƒ3(z) ƒ3(z)
k2 = (e2e3) / (e1e3),  K = 1/2ω (e1e3)1/2,   iK′ = 1/2ω′ (e1e3)1/2;

thus sn(u) is an odd doubly periodic function of the second order with the periods 4K, 2iK, having poles of the first order at u = iK′, u = 2K + iK′, and zeros of the first order at u = 0, u = 2K; similarly cn(u), dn(u) are even doubly periodic functions whose periods can be written down, and sn2(u) + cn2(u) = 1, k2sn2(u) + dn2(u) = 1; if x = sn(u) we at once find, from the relations given here, that

du = [(1 − x2) (1 − k2x2)]−1/2;
dx

if we put x = sinφ we have

du = [1 − k2sin2φ]−1/2,
dφ

and if we call φ the amplitude of u, we may write φ = am(u), x = sin·am(u), which explains the origin of the notation sn(u). Similarly cn(u) is an abbreviation of cos·am(u), and dn(u) of Δam(u), where Δ(φ) meant (1 − k2sin2φ)1/2. The addition equation for each of the functions ƒ1(z), ƒ2(z), ƒ3(z) is very simple, being

ƒ(z + t) = 1/2 ( + ) log ƒ(z) + ƒ(t) = ƒ(z)ƒ′(t) − ƒ(t)ƒ′(z) ,
z ∂i ƒ(z) − ƒ(t) ƒ2(z) − ƒ2(t)

where ƒ1′(z) means dƒ1(z)/dz, which is equal to −ƒ2(z)·ƒ3(z), and ƒ2(z)