This page has been validated.
GEOGNOSY]
GEOLOGY
  653


together, just as iron-sand may be seen gathered into thin sheets on sandy beaches at the present day. Again, the same series of primeval sediments includes intercalations of fine silt, which has been deposited as regularly and intermittently there as it has been among the most recent formations. These bands of shale have been diligently searched for fossils, as yet without success; but they may eventually disclose organic remains older than any hitherto found in Europe.

We now come to the consideration of the palaeontological evidence as to the value of geological time. Here the conclusions derived from a study of the structure of the sedimentary formations are vastly strengthened and extended. In the first place, the organization of the most ancient plants and animals furnishes no indication that they had to contend with any greater violence of storm, flood, wave or ocean-current than is familiar to their modern descendants. The oldest trees, shrubs, ferns and club-mosses display no special structures that suggest a difference in the general conditions of their environment. The most ancient crinoids, sponges, crustaceans, arachnids and molluscs were as delicately constructed as those of to-day, and their remains are often found in such perfect preservation as to show that neither during their lifetime nor after their death were they subject to any greater violence of the elements than their living representatives now experience. Of much more cogency, however, is the evidence supplied by the grand upward succession of organic forms, from the most ancient stratified rocks up to the present day. No biologist now doubts for a moment that this marvellous succession is the result of a gradual process of evolution from lower to higher types of organization. There may be differences of opinion as to the causes which have governed this process and the order of the steps through which it has advanced, but no one who is conversant with the facts will now venture to deny that it has taken place, and that, on any possible explanation of its progress, it must have demanded an enormous lapse of time. In the Cambrian or oldest fossiliferous formations there is already a large and varied fauna, in which the leading groups of invertebrate life are represented. On no tenable hypothesis can these be regarded as the first organisms that came into being on our planet. They must have had a long ancestry, and as Darwin first maintained, the time required for their evolution may have been “as long as, or probably far longer than, the whole interval from the Silurian [Cambrian] age to the present day.” The records of these earliest eras of organic development have unfortunately not survived the geological revolutions of the past; at least, they have not yet been recovered. But it cannot be doubted that they once existed and registered their testimony to the prodigious lapse of time prior to the deposition of the most ancient fossiliferous formations which have escaped destruction.

The impressive character of the evidence furnished by the sequence of organic forms throughout the great series of fossiliferous strata can hardly be fully realized without a detailed and careful study of the subject. Professor E. B. Poulton, in an address to the zoological section of the British Association at the Liverpool Meeting in 1896, showed how overwhelming are the demands which this evidence makes for long periods of time, and how impossible it is of comprehension unless these demands be conceded. The history of life upon the earth, though it will probably always be surrounded with great and even insuperable difficulties, becomes broadly comprehensible in its general progress when sufficient time is granted for the evolution which it records; but it remains unintelligible on any other conditions.

Taken then as a whole, the body of evidence, geological and palaeontological, in favour of the high antiquity of our globe is so great, so manifold, and based on such an ever-increasing breadth of observation and reflection, that it may be confidently appealed to in answer to the physical arguments which would seek to limit that antiquity to ten or twenty millions of years. In the present state of science it is out of our power to state positively what must be the lowest limit of the age of the earth. But we cannot assume it to be much less, and it may possibly have been much more, than the 100 millions of years which Lord Kelvin was at one time willing to concede.[1]

Part III.—Geognosy. The Investigation of the Nature and Composition of the Materials of which the Earth Consists

This division of the science is devoted to a description of the parts of the earth—of the atmosphere and ocean that surround the planet, and more especially of the solid materials that underlie these envelopes and extend downwards to an unknown distance into the interior. These various constituents of the globe are here considered as forms of matter capable of being analysed, and arranged according to their composition and the place they take in the general composition of the globe.

Viewed in the simplest way the earth may be regarded as made up of three distinct parts, each of which ever since an early period of planetary history has been the theatre of important geological operations. (1) An envelope of air, termed the atmosphere, which surrounds the whole globe; (2) A lower and less extensive envelope of water, known as the hydrosphere (Gr. ὕδωρ, water) which, constituting the oceans and seas, covers nearly three-fourths of the underlying solid surface of the planet; (3) A globe, called the lithosphere (Gr. λίθος, stone), the external part of which, consisting of solid stone, forms the crust, while underneath, and forming the vast mass of the interior, lies the nucleus, regarding the true constitution of which we are still ignorant.

1. The Atmosphere.—The general characters of the atmosphere are described in separate articles (see especially Atmosphere; Meteorology). Only its relations to geology have here to be considered. As this gaseous envelope encircles the whole globe it is the most universally present and active of all the agents of geological change. Its efficacy in this respect arises partly from its composition, and the chemical reactions which it effects upon the surface of the land, partly from its great variations in temperature and moisture, and partly from its movements.

Many speculations have been made regarding the chemical composition of the atmosphere during former geological periods. There can indeed be little doubt that it must originally have differed greatly from its present condition. If the whole mass of the planet originally existed in a gaseous state, there would be practically no atmosphere. The present outer envelope of air may be considered to be the surviving relic of this condition, after all the other constituents have been incorporated into the hydrosphere and lithosphere. The oxygen, which now forms fully a half of the outer crust of the earth, was doubtless originally, whether free or in combination, part of the atmosphere. So, too, the vast beds of coal found all over the world, in geological formations of many different ages, represent so much carbonic acid once present in the air. The chlorides and other salts in the sea may likewise partly represent materials carried down out of the atmosphere in the primitive condensation of the aqueous vapour, though they have been continually increased ever since by contributions from the drainage of the land. It has often been suggested that, during the Carboniferous period, the atmosphere must have been warmer and more charged with aqueous vapour and carbon dioxide than at the present day, to admit of so luxuriant a flora as that from which the coal-seams were formed. There seems, however, to be at present no method of arriving at any certainty on this subject. Lastly, the amount of carbonic acid absorbed in the weathering of rocks at the surface, and the consequent production of carbonates, represents an enormous abstraction of this gas.

As at present constituted, the atmosphere is regarded as a


  1. The subject of the age of the earth has also been discussed by Professor J. Joly and Professor W. J. Sollas. The former geologist, approaching the question from a novel point of view, has estimated the total quantity of sodium in the water of the ocean and the quantity of that element received annually by the ocean from the denudation of the land. Dividing the one sum by the other, he arrives at the result that the probable age of the earth is between 90 and 100 millions of years (Trans. Roy. Dublin Soc. ser. ii. vol. vii., 1899, p. 23: Geol. Mag., 1900, p. 220). Professor Sollas believes that this limit exceeds what is required for the evolution of geological history, that the lower limit assigned by Lord Kelvin falls short of what the facts demand, and that geological time will probably be found to have been comprised within some indeterminate period between these limits. (Address to Section C, Brit. Assoc. Report, 1900; Age of the Earth, London, 1905.)