This page has been validated.
654  
GEOLOGY
[GEOGNOSY


mechanical mixture of nearly four volumes of nitrogen and one of oxygen, together with an average of 3.5 parts of carbon dioxide in every 10,000 parts of air, and minute quantities of various other gases and solid particles. Of the vapours contained in it by far the most important is that of water which, although always present, varies greatly in amount according to variations in temperature. By condensation the water vapour appears in visible form as dew, mist, cloud, rain, hail, snow and ice, and in these forms includes and carries down some of the other vapours, gases and solid particles present in the air. The circulation of water from the atmosphere to the land, from the land to the sea, and again from the sea to the land, forms the great geological process whereby the habitable condition of the planet is maintained and the surface of the land is sculptured (Part IV.).

2. The Hydrosphere.—The water envelope covers nearly three-fourths of the surface of the earth, and forms the various oceans and seas which, though for convenience of reference distinguished by separate names, are all linked together in one great body. The physical characters of this vast envelope are discussed in separate articles (see Ocean and Oceanography). Viewed from the geological standpoint, the features of the sea that specially deserve attention are first the composition of its waters, and secondly its movements.

Sea-water is distinguished from that of ordinary lakes and rivers by its greater specific gravity and its saline taste. Its average density is about 1.026, but it varies even within the same ocean, being least where large quantities of fresh water are added from rain or melting snow and ice, and greatest where evaporation is most active. That sea-water is heavier than fresh arises from the greater proportion of salts which it contains in solution. These salts constitute about three and a half parts in every hundred of water. They consist mainly of chlorides of sodium and magnesium, the sulphates of magnesium, calcium and potassium, with minuter quantities of magnesium bromide and calcium carbonate. Still smaller proportions of other substances have been detected, gold for example having been found in the proportion of 1 part in 15,180,000.

That many of the salts have existed in the sea from the time of its first condensation out of the primeval atmosphere appears to be probable. It is manifest, however, that, whatever may have been the original composition of the oceans, they have for a vast section of geological time been constantly receiving mineral matter in solution from the land. Every spring, brook and river removes various salts from the rocks over which it moves, and these substances, thus dissolved, eventually find their way into the sea. Consequently sea-water ought to contain more or less traceable proportions of every substance which the terrestrial waters can remove from the land, in short, of probably every element present in the outer shell of the globe, for there seems to be no constituent of this earth which may not, under certain circumstances, be held in solution in water. Moreover, unless there be some counteracting process to remove these mineral ingredients, the ocean water ought to be growing, insensibly perhaps, but still assuredly, saltier, for the supply of saline matter from the land is incessant.

To the geologist the presence of mineral solutions in sea-water is a fact of much importance, for it explains the origin of a considerable part of the stratified rocks of the earth’s crust. By evaporation the water has given rise to deposits of rock-salt, gypsum and other materials. The lime contained in solution, whether as sulphate or carbonate, has been extracted by many tribes of marine animals, which have thus built up out of their remains vast masses of solid limestone, of which many mountain-chains largely consist.

Another important geological feature of the sea is to be seen in the fact that its basins form the great receptacles for the detritus worn away from the land. Besides the limestones, the visible parts of the terrestrial crust are, in large measure, composed of sedimentary rocks which were originally laid down on the sea-bottom. Moreover, by its various movements, the sea occupies a prominent place among the epigene or superficial agents which produce geological changes on the surface of the globe.

3. The Lithosphere.—Beneath the gaseous and liquid envelopes lies the solid part of the planet, which is conveniently regarded as consisting of two parts,—(a) the crust, and (b) the interior or nucleus.

It was for a long time a prevalent belief that the interior of the globe is a molten mass round which an outer shell has gradually formed through cooling. Hence the term “crust” was applied to this external solid envelope, which was variously computed to be 10, 20, or more miles in thickness. The crust. The portion of this crust accessible to human observation was seen to afford abundant evidence of vast plications and corrugations of its substance, which were regarded as only explicable on the supposition of a thin solid collapsible shell floating on a denser liquid interior. When, however, physical arguments were adduced to show the great rigidity of the earth as a whole, the idea of a thin crust enclosing a molten nucleus was reluctantly abandoned by geologists, who found the problem of the earth’s interior to be incapable of solution by any evidence which their science could produce. They continued, however, to use the term “crust” as a convenient word to denote the cool outer layer of the earth’s mass, the structure and history of which form the main subjects of geological investigation. More recently, however, various lines of research have concurred in suggesting that, whatever may be the condition of the interior, its substance must differ greatly from that of the outer shell, and that there may be more reason than appeared for the retention of the name of crust. Observations on earthquake motion by Dr John Milne and others, show that the rate and character of the waves transmitted through the interior of the earth differ in a marked degree from those propagated along the crust. This difference indicates that rocky material, such as we know at the surface, may extend inwards for some 30 m., below which the earth’s interior rapidly becomes fairly homogeneous and possesses a high rigidity. From measurements of the force of gravity in India by Colonel S. G. Burrard, it has been inferred that the variations in density of the outer parts of the earth do not descend farther than 30 or 40 m., which might be assumed to be the limit of the thickness of the crust. Recent researches in regard to the radio-active substances present in rocks suggest that the crust is not more than 50 m. thick, and that the interior differs from it in possessing little or no radio-active material.

Though we cannot hope ever to have direct acquaintance with more than the mere outside skin of our planet, we may be led to infer the irregular distribution of materials within the crust from the present distribution of land and water, and the observed differences in the amount of The interior. deflection of the plumb-line near the sea and near mountain-chains. The fact that the southern hemisphere is almost wholly covered with water appears explicable only on the assumption of an excess of density in the mass of that portion of the planet. The existence of such a vast sheet of water as that of the Pacific Ocean is to be accounted for, as Archdeacon J. H. Pratt pointed out, by the presence of “some excess of matter in the solid parts of the earth between the Pacific Ocean and the earth’s centre, which retains the water in its place, otherwise the ocean would flow away to the other parts of the earth.” A deflection of the plumb-line towards the sea, which has in a number of cases been observed, indicates that “the density of the crust beneath the mountains must be less than that below the plains, and still less than that below the ocean-bed.” Apart therefore from the depression of the earth’s surface in which the oceans lie, we must regard the internal density, whether of crust or nucleus, to be somewhat irregularly arranged, there being an excess of heavy materials in the water hemisphere, and beneath the ocean-beds, as compared with the continental masses.

In our ignorance regarding the chemical constitution of the nucleus of our planet, an argument has sometimes been based upon the known fact that the specific gravity of the globe as a whole is about double that of the crust. This has been held by some writers to prove that the interior must consist of much heavier material and is therefore probably metallic. But the effect of pressure ought to make the density of the nucleus much higher, even if the interior consisted of matter no heavier than the crust. That the total density of the planet does not greatly exceed its observed amount seems only explicable on the supposition that some antagonistic force counteracts the effects of pressure. The only force we can suppose capable of so acting is heat. But comparatively little is yet known regarding the compression of gases, liquids and solids under such vast pressures as must exist within the nucleus.

That the interior of the earth possesses a high temperature is inferred from the evidence of various sources. (1) Volcanoes, which are openings that constantly, or intermittently, give out hot vapours and molten lava from reservoirs beneath the crust. Besides active volcanoes, it is known that former eruptive vents