Open main menu
This page has been proofread, but needs to be validated.
146
[REPRODUCTION
HYDROMEDUSAE

(histocytes) and germinal cells, actual or potential (archaeocytes), amongst the constituent cells of the animal body. In this way we may distinguish, first, vegetative reproduction, the result of discontinuous growth of the tissues and cell-layers of the body as a whole, leading to (1) fission, (2) autotomy, or (3) vegetative budding; secondly, germinal reproduction, the result of the reproductive activity of the archaeocytes or germinal tissue. In germinal reproduction the proliferating cells may be undifferentiated, so-called primitive germ-cells, or they may be differentiated as sexual cells, male or female, i.e. spermatozoa and ova. If the germ-cells are undifferentiated, the offspring may arise from many cells or from a single cell; the first type is (4) germinal budding, the second is (5) sporogony. If the germ-cells are differentiated, the offspring arises by syngamy or sexual union of the ordinary type between an ovum and spermatozoon, so-called fertilization, of the ovum, or by parthenogenesis, i.e. development of an ovum without fertilization. The only one of these possible modes of reproduction not known to occur in Hydromedusae is parthenogenesis.

(1) True fission or longitudinal division of an individual into two equal and similar daughter-individuals is not common but occurs in Gastroblasta, where it has been described in detail by Arnold Lang [30].

(2) Autotomy, sometimes termed transverse fission, is the name given to a process of unequal fission in which a portion of the body separates off with subsequent regeneration. In Tubularia by a process of decapitation the hydranths may separate off and give rise to a separate individual, while the remainder of the body grows a new hydranth. Similarly in Schizocladium portions of the hydrocaulus are cut off to form so-called “spores,” which grow into new individuals (see Allman [1]).

EB1911 Hydromedusae - Direct Budding of Cunina.jpg

Much modified from C. Chun, “Coelenterata,” in Bronn’s Tierreich.

Fig. 43.—Direct Budding of Cunina.
A, B, C, E, F, In vertical section.
D, Sketch of external view.
st, Stomach.
m, Manubrium.
t. Tentacle.
s.o, Sense organ.
v, Velum.
s.c, Sub-umbral cavity.
n.s Nervous system.

(3) Vegetative budding is almost universal in the Hydromedusae. By budding is understood the formation of a new individual from a fresh growth of undifferentiated material. It is convenient to distinguish buds that give rise to polyps from those that form medusae.

(a) The Polyp.—The buds that form polyps are very simple in mode of formation. Four stages may be distinguished; the first is a simple outgrowth of both layers, ectoderm and endoderm, containing a prolongation of the coelenteric cavity; in the second stage the tentacles grow out as secondary diverticula from the side of the first outgrowth; in the third stage the mouth is formed as a perforation of the two layers; and, lastly, if the bud is to be separated, it becomes nipped off from the parent polyp and begins a free existence.

(b) The Medusae.—Two types of budding must be distinguished—the direct, so-called, palingenetic type, and the indirect, so-called coenogenetic type.

EB1911 Hydromedusae - Medusa budding with the formation of an entocodon.jpg

Fig. 44.—Diagrams of Medusa budding with the formation of an entocodon. The endoderm is shaded, the ectoderm left clear.

A, B, C, D, F, Successive stages in vertical section.
E, Transverse section of a stage similar to D.
Gc, Entocodon.
s.c Cavity of entocodon, forming the future sub-umbral cavity.
st, Stomach.
r.c, Radial canal.
c.c, Circular canal.
e.l, Endoderm lamella.
m, Manubrium.
v, Velum.
t, Tentacle.

The direct type of budding is rare, but is seen in Cunina and Millepora. In Cunina there arises, first, a simple outgrowth of both layers, as in a polyp-bud (fig. 43, A); in this the mouth is formed distally as a perforation (B); next the sides of the tube so formed bulge out laterally near the attachment to form the umbrella, while the distal undilated portion of the tube represents the manubrium (C); the umbrella now grows out into a number of lobes or lappets, and the tentacles and tentaculocysts grow out, the former in a notch between two lappets, the latter on the apex of each lappet (D, E); finally, the velum arises as a growth of the ectoderm alone, the whole bud shapes itself, so to speak, and the little medusa is separated off by rupture of the thin stalk connecting it with the parent (F). The direct method of medusa-budding only differs from the polyp-bud by its greater complexity of parts and organs.

The indirect mode of budding (figs. 44, 45) is the commonest method by which medusa-buds are formed. It is marked by the formation in the bud of a characteristic structure termed the entocodon (Knospenkern, Glockenkern).

EB1911 Hydromedusae - Modifications of the method of medusa budding.jpg

Fig. 45.—Modifications of the method of budding shown in fig. 44, with solid Entocodon (Gc.) and formation of an ectotheca (ect.).

The first stage is a simple hollow outgrowth of both body-layers (fig. 44, A); at the tip of this is formed a thickening of the ectoderm, arising primitively as a hollow ingrowth (fig. 44, B), but more usually as a solid mass of ectoderm-cells (fig. 45, A). The ectodermal ingrowth is the entocodon (Gc.); it bulges into, and pushes down, the endoderm at the apex of the bud, and if solid it soon acquires a cavity (fig. 44, C, s.c.). The cavity of the entocodon increases continually in size, while the endoderm pushes up at the sides of it to form a cup with hollow walls, enclosing but not quite surrounding the entocodon, which remains in contact at its outer side with the ectoderm covering the bud (fig. 44, D, v). The next changes that take place are chiefly in the endoderm-cup (fig. 44, D, E); the cavity between the two walls of the cup becomes reduced by concrescence to form the radial canals (r.c.), ring-canal (c.c.), and endoderm-lamella (e.l., fig. 44, E), and at the same time the base of the cup is thrust upwards to form the manubrium (m), converting the cavity of the entocodon into a