Open main menu
This page needs to be proofread.
88
LUBRICANTS


some being liquids and others soft solids. In many instruments or machines where the surfaces in contact which have to slide upon each other are only lightly pressed together, and are only occasionally given relative motion, the lubricant is only needed to prevent abrasion. Microscopes and mathematical instruments are of this kind. In such cases, the lubricant which keeps the surfaces from abrading each other is a mere contamination film, either derived from the air or put on when the surfaces are finished. When such lubricating films are depended upon, the friction surfaces should be as hard as possible and, if practicable, of dissimilar metals. In the absence of a contamination film, most metals, if rubbed when in contact, will immediately adhere to each other. A large number of experiments have been made to ascertain the coefficient of friction under these imperfect conditions of lubrication. Within wide limits of load, the friction is proportional to the pressure normal to the surfaces and is, therefore, approximately independent of the area of the surfaces in contact. Although the static coefficient is often less than the kinetic at very low speeds, within wide limits the latter coefficient dc creases with increasing speed. These laws apply to all bearings the velocity of rubbing of which is very small, or which are lubricated with solid or semi-solid materials. When the speed of rubbing is considerable and the contamination film is liable to be destroyed, resort is had to lubricants which possess the power of keeping the surfaces apart, and thereby reducing the friction. The constant application of such substances is necessary in the case of such parts of machine tools as slide rests, the surfaces of which only move relatively to each other at moderate speeds, but which have to carry heavy loads. In all ordinary cases, the coefficient of friction of fiat surfaces, such as those of slid e blocks or pivot bearings, is high, owing to the fact that the lubricant is not easily forced between the surfaces. In the case of cylindrical bearing surfaces, such as those of journals and spindles, owing to the fact that the radius of the bearing surface is greater than that of the journal or spindle, the lubricant, if a liquid, is easily drawn in and entirely separates the surfaces (see LUBRICATION). Fortunately, cylindrical bearings are by far the most common and important form of bearing, and they can be so lubricated that the friction coefficient is very low. The lubricant, owing to its viscosity, is forced between the surfaces and keeps them entirely apart. This property of viscosity is one of the most important possessed by liquid lubricants. Some lubricants, such as the oils used for the light spindles of textile machinery, are quite thin and limpid, whilst others, suitable for steam engine cylinders and very heavy bearings, are, at ordinary temperatures, as thick as treacle or honey. Generally speaking, the greater the viscosity of the lubricant the greater the load the bearing will carry, but with thick lubricants the frictional coefficient is correspondingly high. True lubricants differ from ordinary liquids of. equal viscosity inasmuch as they possess the property of “ oiliness.” This is a property which enables them to maintain an unbroken filrn between surfaces when the loads are heavy. It is possessed most markedly by vegetables and animal oils and fats, and less markedly by mineral oils. In the case of mineral lubricating oils from the same source, the lower the specific gravity the greater the oiliness of the liquid, as a rule. Mixtures of mineral oil with animal or vegetable oil are largely used, one class of oil supplying those qualities in which the other is deficient. Thus the mineral oils, which are comparatively cheap and possess the important property of not becoming oxidized into gummy or sticky substances by the action of the air, which also are not liable to cause spontaneous ignition of cotton waste, &c., and can be manufactured of almost any desired viscosity, but which on the other hand are somewhat deficient in the property of oiliness, are mixed with animal or vegetable oils which possess the latter property in marked degree, but are liable to gum and become acid and to cause spontaneous ignition, besides being comparatively expensive and limited in quantity. Oils which become acid attack the bearings chemically, and those which oxidize may become so thick that they fail to run on to the bearings properly.

The following table shows that the permissible load on bearings varies greatly:-

Description of Bearing. Load in lb

per sq. in.

Hard steel bearings on which the load is intermittent, such as the crank pins of shearing

machines ......

000

Bronze cross head neck journals . 1200

Crank pins of large slow engines 800-900

j Crank pins of marine engines 400-500

Main crank-shaft bearings, slow marine 600

Main crank-shaft bearings, fast marine 400

Railway coach journals .... 300-400

Fly-wheel shaft journals ISO-200

Small engine crank pins 150-200

Small slide blocks, marine engines 100

Stationary engine slide block 25-125

Stationary engine slide block, usually, 30-60 Propeller thrust bearings 50-70

Shafts in cast iron steps, high speed

1 5

Solid Lubricants.-Solid substances, such as graphite or plumbago, soapstone, &c., are used as lubricants when there is some objection to liquids or soft solids, but the surfaces between which they are placed should be of very hard materials. They are frequently mixed with oils or greases, the lubricating properties of which they improve. Semi-solid Lubricants.-The contrast in lubricating properties between mineral and fatty oils exists also in the case of a pure mineral grease like vaseline and an animal fat such as tallow, the latter possessing in a far greater degree the property of greasiness. A large number of lubricating greases are made by incorporating or emulsifying animal and vegetable fats with soap and water; also by thickening mineral lubricating oils with soap. Large quantities of these greases are used with very good results for the lubrication of railway waggon axles, and some of them are excellent lubricants for the bearings of slow moving machinery. Care must be taken, however, that they do not contain excess of water and are not adulterated with such useless substances as china clay; also, that they melt as a whole, and that the oil does not run down and leave the soap. This is liable to occur with badly made greascs, and hot bearings are the result. Except in special cases, greases should not be used for quick-running journals, shafts or spindles, on account of the high frictional resistance which they offer to motion. In the case of fats and greases whose melting points are not much above the temperature of surrounding objects it generally happens that the lubricating films are so warmed by friction that they actually melt and act as oils. These lubricants are generally forced into the bearings by a form of syringe fitted with a spring piston, or are squeezed between the faces by means of a screw-plug.

Liquid Lubricants.-Generally speaking, all bearings which it is necessary should run with as little friction as possible must be supplied with liquid lubricants. These may be of animal, vegetable or mineral origin. The mineral oils are mixtures of hydrocarbons of variable viscosity, Bashing-point, density and oiliness. They are obtained by distillation from American, Russian and other petroleum's. The fixed oils obtained from animal and vegetable substances are not volatile without decomposition, and are found ready made in the tissues of animals and plants. Animal oils are obtained from the adipose tissue by simple heat or by boiling with water. They are usually either colourless or yellow. The oils of plants occur usually in the seeds or fruit, and are obtained either by expression or by means of solvents such as ether or petroleum. They are of various shades of yellow and green, the green colour being due to the resence of chlorophyll. Thefundamental difference between fixed oil; and mineral oils exists in their behaviour towards oxygen. Mineral oils at ordinary temperatures are indifferent to oxygen, but all fixed oils combine with it and thicken or gum more or less, generating heat at the same time. Such oils are, therefore, dangerous if dropped upon silk, cotton or woollen waste or other combustible fibrous materials, which are thus rendered liable to spontaneous ignition.

Liquid lubricants are used for all high speed bearings. In some cases the rubbing surfaces work in a bath of the lubricant, which can then reach all the rubbing parts with certainty. Small engines for motor cars or road waggons are often lubricated in this way. In the case of individual bearings, such as those of railway vehicles, a pad of cotton, worsted and horse hair is kept saturated with the lubricant and ressed against the under side of the journal. The journal is thus kept constantly wetted with oil, and the film is forced beneath the brass as the axle rotates. In many cases, oil-ways and grooves are cut in the bearings, and the lubricant is allowed to run by gravity into them and thus finds its way between the opposing surfaces. Tosecure a steady feed various contrivances are adopted, the most common being a wick of cotton or worsted used as a siphon. In cases where it is important that little if any wear should take place, the lubricant is forced by means of a pump between the friction surfaces and a constant film of oil is thereby maintained between them.

For the spindles of small machines such as clocks, watches and other delicate mechanisms, which are only lubricated at long intervals