This page has been proofread, but needs to be validated.
626
UNITED STATES
[GEOLOGY


and Oklahoma, they are tilted and folded, and locally much metamorphosed. The outcrops of the system appear for the most part in close association with the outcrops of the Cambrian system, but the system appears in a few places where the Cambrian does not, as in southern Ohio and central Tennessee. The thickness of the system varies from point to point, being greatest in the Appalachian Mountains, and much less in the interior.

The oil and gas of Ohio and eastern Indiana come from the middle portion of the Ordovician system. So also do the lead and zinc of south-western Wisconsin and the adjacent parts of Iowa and Illinois. The lead of south-eastern Missouri comes from about the same horizon.

The fossils of the Ordovician system show that life made great progress during the period, in numbers both of individuals and of species. The life, like that of the later Cambrian, was singularly cosmopolitan, being in contrast with the provincial character of the life of the earlier Cambrian and of the early (Upper) Silurian which followed. Beside the expansion of types which abounded in the Cambrian, vertebrate remains (fishes) are found in the Ordovician. So, also, are the first relics of insects. The departure of the Ordovician life from that of the Cambrian was perhaps most pronounced in the great development of the molluscs and crinoids (including cystoids), but corals were also abundant for the first time, and graptolites came into prominence.

Silurian System.—The Silurian system is much less widely distributed than the Ordovician. This and other corroborative facts imply a widespread emergence of land at the close of the Ordovician period. As a result of this emergence the stratigraphic break between the Ordovician and the Silurian is one of the greatest in the whole Palaeozoic group.

The classification of the system in New York is as follows:—

Silurian Cayugan
 (Neo- or Upper Silurian)
Manlius limestone.
Rondout waterlime.
Cobleskill limestone.
Salina beds.
Niagaran
 (Meso- or Middle Silurian)
Guelph dolomite.
Lockport limestone.
Rochester shale.
Clinton beds.
Oswegan
 (Palaeo- or Lower Silurian)
Medina sandstone.
Oneida conglomerate.
Shawangunk grit.

The lower part of this system is chiefly elastic, and is known only in the eastern part of the continent. The middle portion contains much limestone, generally known as the Niagara limestone, and is much more widespread than the lower, being found very generally over the eastern interior, as far west as the Mississippi and in places somewhat beyond. The Niagara limestone contains the oldest known coral reefs of the continent. They occur in eastern Wisconsin and at other points farther east and south. It is over this limestone that the Niagara falls in the world-famous cataract. One member of the middle division of the system (Clinton beds) contains much iron ore, especially in the Appalachian Mountain region. The ore is extensively worked at some points, as at Birmingham, Alabama. The upper part of the system is more restricted than the middle, and includes the salt-bearing series of New York, Ohio and Pennsylvania, with its peculiar fauna. It is difficult to see how salt could have originated in this region except under conditions very different climatically from those of the present time.

In the interior the thickness of the system is less than 1000 ft. in many places, but in and near the Appalachian Mountains its thickness is much greater—more than five times as great if the maximum thicknesses of all formations be made the basis of calculation. In the Great Plains and farther west the Silurian has little known representation. Either this part of the continent was largely land at this time, or the Silurian formations here have been worn away or remain undifferentiated. Rocks of Silurian age, however, are known at some points in Arizona, Nevada and southern California.

Corals, echinoderms, brachiopods and all groups of molluscs abounded. Graptolites had declined notably as compared with the Ordovician, and the trilobites passed their climax before the end of the period. Certain other remarkable crustacean, however, had made their appearance, especially in connexion with the Salina series of the east.

There are numerous outliers of the Silurian north of the United States, even up to the Arctic regions. These outliers have a common fauna, which is closely related to that of the interior of the United States. They give some clue to the amount of erosion which the system has suffered, and also afford a clue to the route by which the animals whose fossils are found in the United States entered this country. Thus, the Niagara fauna of the interior of the United States has striking resemblances to the mid-Silurian faunas of Sweden and Great Britain. It seems probable, therefore, that marine animals found migratory conditions between these regions, probably by way of northern islands. The fauna of the Appalachian region is far less like that of Europe, and indicates but slight connexion with the fauna of the interior. Both the earlier and the later parts of the Silurian period seem to have been times when physical conditions were such as to favour the development of provincial faunas, while during the more widespread submergence of the middle Silurian the fauna was more cosmopolitan.

Devonian System.—The Devonian system appears in some parts of New England, throughout most of the Appalachian region, over much of the eastern interior from New York to the Missouri River, in Oklahoma, and perhaps in Texas. It is absent from the Great Plains, so far as now known, and is not generally present in the Rocky Mountains, though somewhat widespread between them and the western coast. As a whole, the system is more widespread than the Silurian, though not so widespread as the Ordovieian. As in the case of the Ordovician and the Silurian, the New York section has become a standard with which the system in other parts of the country is commonly compared. This section is as follows:—

Devonian Upper
 Devonian
Chautauquan-Chemung (including Catskill).
Senecan Portage beds.
Genesee shale.
Tully limestone.
Middle
 Devonian
Erian Hamilton shale.
Marcellus shale.
Ulsterian Onondaga (Corniferous limestone)
Schoharie grit.
Esopus grit.
Lower
 Devonian
Oriskanian Oriskany beds.
Helderbergian Kingston beds.
Becraft limestone.
New Scotland beds.
Coeymans limestone.

The formations most widely recognized are the Helderberg limestone, the Onondaga limestone and the Hamilton shale.

The Catskill sandstone, found chiefly in the Catskill Mountain region of New York, is one of the distinctive formations of the system. It has some similarity to the Old Red Sandstone of Great Britain. In part, at least, it is equivalent in time of origin to the Chemung formation; but the latter is of marine origin, while the Catskill formation appears to be of terrestrial origin.

No other system of the United States brings out more clearly the value of palaeontology to palaeogeography. The faunas of the early Devonian seem to have entered what is now the interior of the United States from the mid-Atlantic coast. The Onondaga fauna which succeeded appears to have resulted from the commingling of the resident lower Devonian fauna with new emigrants from Europe by way of the Arctic regions. The Hamilton fauna which followed represents the admixture of the resident Onondaga fauna with new types which are thought to have come from South America, showing that faunal connexions for marine life had been made between the interior of the United States and the lands south of the Caribbean Sea, a connexion of which, before this time, there was no evidence. The late Devonian fauna of the interior represents the commingling of the Hamilton fauna of the eastern interior with new emigrants from the north-west, a union which was not effected until toward the close of the period.

Like the earlier Palaeozoic systems, the Devonian attains its greatest known thickness in the Appalachian Mountains, where sediments from the lands of pre-Cambrian rock to the east accumulated in quantity. Here elastic rocks predominate, while limestone is more abundant in the interior. If the maximum thicknesses of all Devonian formations be added together, the total for the system is as much as 15,000 ft.; but such a thickness is not found in any one place.

The Devonian system yields much oil and gas in western Pennsylvania, south-western New York, West Virginia and Ontario; and some of the Devonian beds in Tennessee yield phosphates of commercial value. The Hamilton formation yields much flagstone.

Among the more important features of the marine life of the period were (1) the great development of the molluscs, especially of cephalopods; (2) the abundance of large brachiopods; (3) the aberrant tendencies of the trilobites; (4) the profusion of corals; and (5) the abundance, size and peculiar forms of the fishes. The life of the land waters was also noteworthy, especially for the great deployment of what may be called the crustacean-ostracodermo-vertebrate group. The crustacea were represented by eurypterids, the ostracoderms by numerous strange, vertebrate-like forms (Cephalaspis, Cyathaspis, Trematopris, Bothriolepis, &c.), and the vertebrates by a great variety of fishes. The land life of the period is represented more fully among the fossils than that of any preceding period. Gymnosperms were the highest types of plants.

The Devonian system is not set off from the Mississippian by any marked break. On the other hand, the one system merges into the other, so that the plane of separation is often indistinct.

Mississippian System.—The Mississippian system was formerly regarded as a part of the Carboniferous, and was described under the name of Lower Carboniferous, or Subcarboniferous, without the rank of a system. This older classification, which has little support except that which is traditional, is still adhered to by many geologists; but the fact seems to be that the system is set off from the Pennsylvanian (Upper Carboniferous) more sharply than the Cambrian is from the Ordovician, the Silurian from the Devonian, or the Devonian from the Mississippian.