Page:Elementary Principles in Statistical Mechanics (1902).djvu/14

This page has been proofread, but needs to be validated.
viii
PREFACE.

Such inquiries have been called by Maxwell statistical. They belong to a branch of mechanics which owes its origin to the desire to explain the laws of thermodynamics on mechanical principles, and of which Clausius, Maxwell, and Boltzmann are to be regarded as the principal founders. The first inquiries in this field were indeed somewhat narrower in their scope than that which has been mentioned, being applied to the particles of a system, rather than to independent systems. Statistical inquiries were next directed to the phases (or conditions with respect to configuration and velocity) which succeed one another in a given system in the course of time. The explicit consideration of a great number of systems and their distribution in phase, and of the permanence or alteration of this distribution in the course of time is perhaps first found in Boltzmann's paper on the "Zusammenhang zwischen den Sätzen über das Verhalten mehratomiger Gasmoleküle mit Jacobi's Princip des letzten Multiplicators" (1871).

But although, as a matter of history, statistical mechanics owes its origin to investigations in thermodynamics, it seems eminently worthy of an independent development, both on account of the elegance and simplicity of its principles, and because it yields new results and places old truths in a new light in departments quite outside of thermodynamics. Moreover, the separate study of this branch of mechanics seems to afford the best foundation for the study of rational thermodynamics and molecular mechanics.

The laws of thermodynamics, as empirically determined, express the approximate and probable behavior of systems of a great number of particles, or, more precisely, they express the laws of mechanics for such systems as they appear to beings who have not the fineness of perception to enable them to appreciate quantities of the order of magnitude of those which relate to single particles, and who cannot repeat their experiments often enough to obtain any but the most probable results. The laws of statistical mechanics apply to conservative systems of any number of degrees of freedom,