Page:History of botany (Sachs; Garnsey).djvu/469

This page has been proofread, but needs to be validated.
Chap. ii.]
the Nutrition of Plants.
449


plants to physico-mechanical principles; de Saussure and others showed that the heat of plants is a product of respiration, and by 1840 the earlier theory of a vital force might be looked upon as antiquated and obsolete. It remained to restore to their rights the observations of Ingen-Houss and de Saussure, which under the influence of that theory and of the notions respecting the humus had been so utterly misconstrued. Liebig set aside the humus-theory in 1840, and referred the carbon of plants entirely to the carbon dioxide of the atmosphere, and their nitrogenous contents to ammonia and its derivatives; he claimed the components of the ash as essential factors in the nutrition, and taking his stand on the general laws of chemistry endeavoured to obtain chiefly by the method of deduction an insight into the chemical processes of assimilation and metabolism. The whole theoretical value of the facts discovered by Ingen-Houss, Senebier and de Saussure was first made apparent by the connection which Liebig succeeded in establishing between the phenomena of nutrition. The doctrine of nutrition burst suddenly into new life; firm ground was gained, and the botanist, no longer distracted by the difficulties raised by the vital force but resting on physical and chemical principles, might now resume the task of investigation. Oxygen-respiration denied by Liebig was first of all re-established by von Mohl and others. Liebig's views on the source of nitrogen in plants and on the importance of the ash-constituents rested chiefly on general considerations and observations and on calculation, and had now to be tested by systematic investigation and especially by experiments on vegetation in individual plants. And here the place of honour must be assigned to Boussingault, who pursued the path of pure induction as contrasted with Liebig's deductive mode of proceeding, gradually improved the methods for experimenting on vegetation, and soon succeeded in so producing plants in a purely mineral soil free from all humus, that he finally settled the question of the derivation of the carbon from the atmosphere