Page:Philosophical Transactions - Volume 095.djvu/273

This page has been proofread, but needs to be validated.
Motion of the Sun, and solar System.

is 36° 41' 34". The opposite of this, or right ascension 255° 39' 50", and north polar distance 36° 41' 34", is what we are to assume for the required apex of the solar motion.

When a star is situated at a certain distance from the sun, which we shall call 1; and 90° from the apex of the solar motion, its parallactic motion will be a maximum. Let us now suppose the velocity of the sun to be such that its motion, to a person situated on this star, would appear to describe annually an arch of 2",84825, or, which is the same thing, that the star would appear to us, from the effect of parallax, to move over the above mentioned arch in the same time.

To apply this to Arcturus, we find by calculation that its distance from the apex of the solar motion is 47° 7' 6"; its parallactic motion therefore, which is as the sine of that distance, will be 2",08718; and this, as has been shown, is the apparent motion which observation has established as the proper motion of Arcturus.

In the next place, if we admit Sirius to be a very large star situated at the distance 1,6809 from us, and compute its elongation from the apex of the solar motion, we shall find it 138° 50' 14",5. With these two data we calculate that its parallactic motion will be 1",11528; and this also agrees with the apparent motion which has been ascertained by observation as the proper motion of Sirius.

Now since, according to the rules of philosophising, we ought not to admit more motions than will account for the observed changes in the situation of the stars, it would be wrong to have recourse to the motions of Arcturus and Sirius, when that of the sun alone will account for them both; and this consideration would be a sufficient inducement for us to