Page:Popular Science Monthly Volume 19.djvu/342

This page has been proofread, but needs to be validated.
328
THE POPULAR SCIENCE MONTHLY.

Fig. 10.

of the tuning-fork (A), and the passage of the beam is more or less obstructed by the vibration of the opaque screens (C D) carried by the prongs of the fork.

As the tuning-fork (A) produces a sound by its own vibration, it is placed at a sufficient distance away to be inaudible through the air, and a system of lenses is employed for the purpose of bringing the undulating beam of light to the receiving lens (E) with as little loss as possible. The two receivers (F G) are attached to slides (H I) which move upon opposite sides of the axis of the beam, and the receivers are connected by flexible tubes of unequal length (K L) communicating with the common hearing-tube (M).

The length of the tube (K) is such that the sonorous vibrations from the receivers (F G) reach the common hearing-tube (M) in opposite phases. Under these circumstances silence is produced when the vibrations in the receivers (F G) are of equal intensity. When the intensities are unequal, a residual effect is perceived. In operating the instrument the position of the receiver (G) remains constant, and the receiver (F) is moved to or from the focus of the beam until complete silence is produced. The relative positions of the two receivers are then noted.

3. Another mode is as follows: The loud ness of a musical tone produced by the action of light is compared with the loudness of a tone of similar pitch produced by electrical means. A rheostat introduced into the circuit enables us to measure the amount of resistance required to render the electrical sound equal in intensity to the other.

4. If the tuning-fork (A) in Fig. 11 is thrown into vibration by an undulatory instead of an intermittent current passed through the electro-magnet (B), it is probable that a musical tone, electrically produced in the re-