Page:Popular Science Monthly Volume 22.djvu/815

This page has been proofread, but needs to be validated.

be excessively small, the velocity of the radiant particles being equal at least to that of the transmission of light.[1]

It is clear that, by the use of the term "free path" by the inventors of this form of the ether, its particle had already been tacitly endowed with the ocult properties of inertia and resilience. Primordial motion was also attributed—an occult factor, which, with the other two, constitutes and conserves energy.

Such an ether serves to explain the phenomena of light, and the other radiant modes of energy, better than any other yet proposed. It, therefore, measurably serves its purpose. Prior to its invention, we had only—first, Newton's hypothesis of corpuscular emission, instantaneously propagated with explosive violence at an enormous but still uniform velocity, in all possible directions, in radial lines, which still were able to fill space at all points to unlimited distances—infinite and impossible results from a trivial cause; secondly, we had Huygens's scarcely more credible hypothesis of undulations, propagated, with the same instantaneous and uniform velocity in all directions, from a luminous point in a pervading statical solid or fluid medium—another infinite effect from a trivial cause. But by the hypothesis of its own independent linear motion, ever conserved—the parasitic energy alone being transferable, and by a mechanism different from the translatory motion—many difficulties are got over. The conservation of the linear motion is due to the law of radiant matter above stated, and also, I conceive, to another consideration, which tends to prevent the bombardment of the molecules, and consequent rise of temperature and distribution of energy, so fatal to the gravitation theory. It is that the only obstructive portion of the so-called material atom (which I have named the elementary molecule) lies in the extreme boundary; and even of this it constitutes only such fraction as the ratio which the dimension of the component particle bears to the semi-circumference of the atom, which is an infinitesimal ratio. The component, having a dimension and velocity of an order comparable with that of the ethereal particles themselves, can protect itself from collisions by a readjustment, without rise of temperature, on the same terms as obtain with ethereal collisions. Collisions, however, would be excessively rare—as much so as those of the particles among themselves—and an occasional collision could not destroy the atom, owing to the peculiar bond of the component with its fellow; but its motion would be merely compounded into a gyration. The real field

  1. The velocity would really be at least one third greater. It has been shown, by a calculation of Maxwell's ("London, Edinburgh, and Dublin Philosophical Magazine," 1877, p. 453), that, in a gas constituted as assumed, the velocity of the wave-motion would be to the velocity of the particle in the ratio of the that is, about ·745+; which would give a velocity for the ethereal particle of nearly 250,000 miles per second. It is highly probable, moreover, that some forms of electrical radiant energy surpass light in velocity of transmission.