Page:Popular Science Monthly Volume 23.djvu/479

This page has been proofread, but needs to be validated.

than any hitherto pointed out. For all ordinary sources of radiant heat the bisulphide, both in the liquid and vaporous form, is the most transparent, or diathermanous, of bodies. It transmits, for example, ninety per cent of the radiation from our hydrogen-flame, ten per cent only being absorbed. But when we make the carbonic-oxide flame our source of rays, the bisulphide shows itself to be a body of extreme opacity. The transmissive power falls from ninety to about twenty-five per cent, seventy-five per cent of the radiation being absorbed. To the radiation from the carbonic-oxide flame the bisulphide behaves like the carbonic acid. In other words, the group of atoms constituting the molecule of the bisulphide vibrate in the same periods as those of the atoms which constitute the molecule of the carbonic acid. And thus we have established a new, subtile, but most certain resemblance between these two substances. The time may come when chemists will make more use than they have hitherto done of radiant heat as an explorer of molecular condition.

The conception of these quivering atoms is a theoretic conception, but it is one which gives us a powerful grasp of the facts, and enables us to realize mentally the mechanism on which radiation and absorption depend. We will now turn to a more practical view of the subject. It is pretty well known that for a long series of years I conducted an amicable controversy with one of the most eminent experimenters of our time, as regards the action of the earth's atmosphere on solar and terrestrial radiation. My contention was that the great body of our atmosphere—its oxygen and nitrogen—had but little effect upon either the rays of the sun coming to us, or the rays of the earth darting away from us into space; but that mixed with the body of our air there was an attenuated and apparently trivial constituent which exercised a most momentous influence. That body, as many of you know, is aqueous vapor, the amount of which does not exceed one per cent of the whole atmosphere. Minute, however, as its quantity is, the life of our planet depends upon this vapor. Without it, in the first place, the clouds could drop no fatness. In this sense the necessity for its presence is obvious to all. But it acts in another sense as a preserver. Without it as a covering, the earth would soon be reduced to the frigidity of death. Observers were, and are, slow to take in this fact, which nevertheless is a fact, however improbable it may at first sight appear. The action of aqueous vapor upon radiant heat has been established by irrefragable experiments in the laboratory; and these experiments, though not unopposed, have been substantiated by some of the most accomplished meteorologists of our day.

I wished much to instruct myself a little by actual observation on this subject, under the open sky, and my first object was, to catch, if possible, states of the weather which would enable me to bring my views to a practical test. About a year ago, a little iron hut, embrac-