Page:Popular Science Monthly Volume 25.djvu/760

This page has been proofread, but needs to be validated.
742
THE POPULAR SCIENCE MONTHLY.

time and energy to the actual advancement of knowledge. Not that I would complain of the association sanctioned by common parlance. A sound knowledge of at least the principles of general physics is necessary to the cultivation of any department. The predominance of the sense of sight as the medium of communication with the outer world brings with it dependence upon the science of optics; and there is hardly a branch of science in which the effects of temperature have not (often without much success) to be reckoned with. Besides, the neglected border-land between two branches of knowledge is often that which best repays cultivation, or, to use a metaphor of Maxwell's, the greatest benefits may be derived from a cross-fertilization of the sciences. The wealth of material is an evil only from the point of view of one of whom too much may be expected. Another difficulty incident to the task, which must be faced but can not be overcome, is that of estimating rightly the value, and even the correctness, of recent work. It is not always that which seems at first the most important that proves in the end to be so. The history of science teems with examples of discoveries which attracted little notice at the time, but afterward have taken root downward and borne much fruit upward.

One of the most striking advances of recent years is in the production and application of electricity upon a large scale—a subject to which I have already had occasion to allude in connection with the work of Sir W. Siemens. The dynamo-machine is, indeed, founded upon discoveries of Faraday now more than half a century old; but it has required the protracted labors of many inventors to bring it to its present high degree of efficiency. Looking back at the matter, it seems strange that progress should have been so slow. I do not refer to details of design, the elaboration of which must always, I suppose, require the experience of actual work to indicate what parts are structurally weaker than they should be, or are exposed to undue wear and tear. But, with regard to the main features of the problem, it would almost seem as if the difficulty lay in want of faith. Long ago it was recognized that electricity derived from chemical action is (on a large scale) too expensive a source of mechanical power, notwithstanding the fact that (as proved by Joule in 1846) the conversion of electrical into mechanical work can be effected with great economy. From this it is an evident consequence that electricity may advantageously be obtained from mechanical power; and one can not help thinking that, if the fact had been borne steadily in mind, the development of the dynamo might have been much more rapid. But discoveries and inventions are apt to appear obvious when regarded from the stand-point of accomplished fact, and I draw attention to the matter only to point the moral that we do well to push the attack persistently when we can be sure beforehand that the obstacles to be overcome are only difficulties of contrivance, and that we are not vainly fighting unawares against a law of Nature.