Page:Popular Science Monthly Volume 29.djvu/546

This page has been proofread, but needs to be validated.
530
THE POPULAR SCIENCE MONTHLY.

and within a few years the multitude of isolated observations have been collected, classified, and made available. The importance of this undertaking will be more appreciated in the future than it has been in the immediate past. In all cases of chemical change, energy in the form of heat is either developed or absorbed, and the amount is as definite in a given reaction as are the weights of the substances concerned; hence, measurement of the quantity of heat set free or absorbed in chemical reactions often enables the chemist to determine the true nature of the change. For example, the exact condition of certain bodies in solution can only be conjectured from certain physical characters, few and ill-defined; but by thermic methods of investigation the bodies formed can be accurately ascertained. This is accomplished by reference to the law of maximum work: "In any reaction, those bodies, the formation of which gives rise to the greatest development of heat, are formed in preference to others." Thus the thermometer alone in skillful hands determines the a priori necessity or impossibility of a reaction.

Berthelot, in Paris, and Thorn sen, in Copenhagen, have pursued the subject of thermo-chemistry with indefatigable zeal, and their published results form monuments of exhaustive research. "By the labors chiefly of these two men, we now know the thermal values corresponding to many thousands of chemical reactions. We have learned that the energies of a reaction which can be brought about in two methods, either in the dry way or by solution, differ in the two cases; that salts in solution are in a partial state of decomposition; that the attraction of a polybasic acid radical is not the same for the successive portions of base added, and that the behavior of a monobasic acid in solution differs essentially from that of a dibasic or tribasic acid. We also know that the total energy involved in any reaction is largely influenced by the surrounding conditions of temperature, pressure, and volume."

The interesting border-line between chemistry and physics is an increasing subject of research on the part of both the chemist and the physicist. The periodic press chronicles profound studies of the relations between chemical constitution and the phenomena of diffusion, of capillarity, of dialysis, of dissociation, and of the law of isomorphism. We read investigations on the value of the theory of atomicity, and on the nature of nascent action. Researches in the domain of electrochemistry, especially in connection with the various forms of storage batteries, and in relation to the methods and results of electrolysis, are of such importance as to merit a whole address. The press also records numerous studies in actinometry, of the relations between chemical composition and fluorescence and phosphorescence, as well as of polychroism, and of the results of spectrum observations. Noteworthy are the special applications of optical methods to the determination of molecular structure, viz., the relations between chemical composition