Page:Popular Science Monthly Volume 31.djvu/38

This page has been validated.
28
THE POPULAR SCIENCE MONTHLY.

orbits of the planets, whose evolution requires some finer if more complex fore-ordination than merely the existence of two masses undisturbed by any other matter in space.

I shall only say in conclusion: Assuming the sun's mass to be composed of portions which were far asunder before it was hot, the immediate antecedent to its incandescence must have been either two bodies with details differing only in proportion and densities from the cases we have been now considering as examples; or it must have been some number more than two—some finite number—at the most the number of atoms in the sun's present mass, which is a finite number as easily understood and imagined as number 3 or number 123. The immediate antecedent to incandescence may have been the whole constituents in the extreme condition of subdivision—that is to say, in the condition of separate atoms; or it may have been any smaller number of groups of atoms making up minute crystals or groups of crystals—snow-flakes of matter, as it were; or it may have been lumps of matter like this macadamizing stone; or like this stone, which you might mistake for a macadamizing stone, and which was actually traveling through space till it fell on the earth at Possil, in the neighborhood of Glasgow, on April 5, 1804; or like this—which was found in the Desert of Atacama in South America, and is believed to have fallen there from the sky—a fragment made up of iron and stone, which looks as if it had solidified from a mixture of gravel and melted iron in a place where there was very little of heaviness; or this splendidly crystallized piece of iron, a slab cut out of the celebrated aërolite of Lenarto, in Hungary;[1] or this wonderfully shaped specimen, a model of the Middlesburgh meteorite, kindly given me by Professor A. S. Herschel, with corrugations showing how its melted matter has been scoured off from the front part of its surface in its final rush through the earth's atmosphere when it was seen to fall on March 14, 1881, at 3.35 p. m.

For the theory of the sun it is indifferent which of these varieties of configurations of matter may have been the immediate antecedent of his incandescence, but I can never think of these material antecedents without remembering a question put to me thirty years ago by the late Bishop Ewing, Bishop of Argyll and the Isles: "Do you imagine that piece of matter to have been as it is from the beginning; to have been created as it is, or to have been as it is through all time till it fell on the earth?" I had told him that I believed the sun to be built up of stones, but he would not be satisfied till he knew, or could imagine, what kind of stones. I could not but agree with him in feeling it impossible to imagine that any one of these meteorites before you has been as it is through all time, or that the materials of the sun were like this for all time before they came together and became hot.

  1. The three aërolites now exhibited belong to the Hunterian Museum of the University of Glasgow, and have been kindly lent me for this evening by the curator, Dr. Young.