Open main menu

Page:Popular Science Monthly Volume 34.djvu/401

This page has been proofread, but needs to be validated.

He uses the then all-powerful "Edinburgh Review" for his pulpit, and notices Young's great memoir as follows: "This paper contains nothing which deserves the name either of experiment or discovery; and it is, in fact, destitute of every species of merit. ... The paper which stands first is another lecture, containing more fancies, more blunders, more unfounded hypotheses, more gratuitous fictions, ... and all from the fertile yet fruitless brain of the eternal Dr. Young. In our second number we exposed the absurdity of this writer's 'law of interference,' as it pleases him to call one of the most incomprehensible suppositions that we remember to have met with in the history of human hypotheses."

There are whole pages of it, but this is enough; and I cite this passage among many such at command, not only as an example of the way the undulatory theory was treated at the beginning of this century in the first critical journal of Europe, but as another example of the general fact that the same thing may appear intrinsically absurd, or intrinsically reasonable, according to the year of grace in which we hear of it. The great majority, even of students of science, must take their opinions ready-made as to science in general; each knowing, so far as he can be said to know anything at first hand, only that little corner which research has made specially his own. The moral we can all draw, I think, for ourselves.

In spite of such criticism as this, the undulatory hypothesis of light made rapid way, and carried with it, one would now say, the necessary inference that radiant heat was due to undulations also. This was, however, no legitimate inference to those to whom radiant heat was still a fluid; and yet, in spite of all, the modern doctrine now begins to make visible progress.

A marked step is taken about 1811 by a young Frenchman, De la Roche, who deserves to be better remembered than he is, for he clearly anticipated some of Melloni's discoveries. De la Roche in particular shows that of two successive screens the second absorbs heat in a less ratio than the first; whence he, before any one else, I believe, derives the just and most important, as well as the then most novel conception, that radiant heat is of different kinds. He sees also that, as a body is heated more and more, there is a gradual and continual advance not only in the amount of heat it sends out, but in the kind, so that, as the temperature still rises, the radiant heat becomes light by imperceptible gradations; and he concludes that heat and light are due to one simple agent, which, as the temperature rises yet more, appears more and more as light, or which, as the luminous radiation is absorbed, reappears as heat. Very little of it, he observes, passes even transparent screens at low temperatures, but more and more does so as the temperature rises. All this is a truism in 1888, but it is admirably