Page:Popular Science Monthly Volume 45.djvu/58

This page has been proofread, but needs to be validated.

Hispar Glacier (forty miles long) are "entirely covered with a mantle of moraine." If these glaciers extended to over a hundred miles long, as did the Rhone Glacier when it reached the Lake of Geneva, much of this d├ębris would probably have found its way to the bottom, and thus supply the necessary grinding material and the abundant stones of the "till" found everywhere in the tracks of the old glaciers.

Again, although ice is viscous and can slowly change its shape to almost any extent, yet it takes a considerable time to adapt itself to continually changing outlines of the valley bottom. Hence, where great inequalities occur portions of the rocky floor might be bridged over for a considerable space, and where a valley had a narrow V-shaped bottom the subglacial stream might eat away so much of the ice that the glacier might rest wholly on the lateral slopes, and hardly touch the bottom at all. On a tolerably wide and level valley bottom, however, the ice would press with its fullest intensity, and its armature of densely packed stones and rock fragments would groove and grind the rocky floor over every foot of its surface, and with a rate of motion perhaps greater than that of the existing Greenland and Alaskan glaciers, owing to the more southern latitude and therefore higher mean temperature of the soil and the ice. At the same time subglacial streams, forced onward under great hydrostatic pressure, would insinuate themselves into every vacant groove and furrow as each graving tool successively passed on and the one behind it took a slightly different position; and thus the glacial mud, the product of the erosion, would be continually washed away, finally escaping at the lower extremity of the glacier, or in some cases getting embayed in rocky hollows where it might remain permanently as masses of clayey "till," packed with stones and compressed by the weight of the ice to the hardness of rock itself. The continual lubrication of the whole valley floor by water forced onward under pressure, together with the ever-changing form of the under surface of the glacier as it slowly molded itself to the varying contours of the rocks beneath, would greatly facilitate the onward motion. Owing to these changes of form and the great upward pressure of the water in all the hollows to which it gained access, it seems probable that at any one time not more than half the entire bottom surface of the glacier would be in actual contact with the rock, thus greatly reducing the friction; while, as the process of erosion went on, the rock surfaces would become continually smoother and the inequalities less pronounced, so that even when a rock basin had been ground out to a considerable depth the onward motion might be almost as great as at the beginning of the process.

If, now, we consider that the erosion I have attempted to describe