Page:Popular Science Monthly Volume 57.djvu/510

This page has been validated.



By Professor SIMON NEWCOMB, U. S. N.


THE principles on which spectrum analysis rests can be stated so concisely that I shall set them forth for the special use of such readers as may not be entirely familiar with the subject. Every one knows that when the rays of the sun pass through a triangular prism of glass or other transparent substance they are unequally refracted, and thus separated into rays of different colors. These colors are not distinct, but each runs into the other by insensible gradations, from deep red through orange, yellow, green and blue to a faint violet.

This result is due to the fact that the light of the sun is composed of rays of an infinite number of wave-lengths, or, as we might express it, of an infinite number of shades of color, since to every wave-length corresponds a definite shade. Such a spreading out of elementary colors in the form of a visible sheet is called a spectrum. By the spectrum of an incandescent object is meant the spectrum formed by the light emitted by the object when passed through a refracting prism, or otherwise separated into its elementary colors. The interest and value which attach to the study of spectra arise from the fact that different bodies give different kinds of spectra, according to their constitution, their temperature and the substances of which they are composed. In this manner it is possible, by a study of the spectrum of a body, to reach certain inferences respecting its constitution.

In order that such a study should lead to a definite conclusion, we must recall that to each special shade of color corresponds a definite position in the spectrum. That is to say, there is a special kind of light having a certain wave-length and therefore a certain shade which will be refracted through a certain fixed angle, and will therefore fall into a definite position in the spectrum. This position is, for every possible kind of light, expressed by a number indicating its wave-length.

If we form a spectrum with the light emitted by an ordinary incandescent body, a gaslight for example, we shall find the series of colors to be unbroken from one end of the spectrum to the other. That is to say, there will be light in every part of the spectrum. Such a spectrum is said to be continuous. But if we form the spectrum by means of sunlight, we shall find the spectrum to be crossed by a great number of more or less dark lines. This shows that in the spectrum of