Page:Popular Science Monthly Volume 6.djvu/216

This page has been validated.
204
THE POPULAR SCIENCE MONTHLY.

tioned to the square of the distance to be traveled. Therefore, the velocity has no constant fixed value, but varies with the length of the journey. This law, which is deduced from the mathematical theory of Ohm, introduces order among the experiments, where, otherwise, there would be chaos. It is not surprising that Wheatstone and the readers whom he addressed were misled by the original facts. Few men who have rendered signal services to science, and who have finally reached the highest pinnacle of fame, have suffered more from poverty and neglect, and waited longer for a recognition of their merits, than the modest student of Nuremberg. The slender volume which will perpetuate his name was indeed published at Berlin in 1827, and antedates Wheatstone's experiments by seven years. But the book was treated with contempt by a minister of state, to whom Ohm presented a copy, at his University of Cologne, and was first brought to the notice of English readers in 1841, when an English translation of it was effected through the agency of the British Association, and the Copley medal was presented to Ohm by the Royal Society of London. As late as 1860, when the same work was rendered into French, the translator admits that the mathematical theory of Ohm on the galvanic circuit, the elements of which have since rapidly circulated in popular text-books, was almost unknown in France, that high seat of science. If the serene but steady light of mathematics had not been dimmed by the blaze of experimental successes, and the teachings of Ohm had been heeded sooner, the science of electricity would have been the gainer, and the men of science would have been saved the mortification of treating the electro-magnetic telegraph as an impracticability.

When Wheatstone was a candidate to fill a vacancy in the corresponding members of the French Institute, it was objected that he had only made a brilliant experiment, but had not discovered a new principle. Arago came to his rescue, and asserted that he had introduced a powerful and fertile method of experimentation which would be felt in other sciences besides electricity. The French physicist lost no time in devising means for making good these claims. If it could be proved experimentally that the velocity of light was greater in air than in water, a capital fact in the contending theories of light would be settled forever. Arago planned the experiment and pressed its feasibility upon the Academy of Sciences with all the power and eloquence of his nature. At last he roused two younger physicists to undertake what his growing infirmities prevented him from doing with his own hands. The result declared in favor of undulations, and a fatal blow was dealt to the corpuscular theory of light which had vexed science since the days of Newton. If Fizeau and Foucault drew their inspiration from Arago, they owed their success to nothing except their own skill in devising and executing. Having tried the temper of their steel on this easier problem, they were ready for the grand attack, which was, to measure the absolute velocity of light.