Page:Popular Science Monthly Volume 6.djvu/220

This page has been validated.
208
THE POPULAR SCIENCE MONTHLY.

labored, by demonstrating, in 1860, the law which is the theoretical basis of the chemistry of the heavens. Kirchhoff, with admirable frankness, is careful to say that this law had been anticipated by others, especially by Angström and Balfour Stewart, although it had not been sharply stated or severely proved. It is a singular fact that the mechanical explanation of the law, as it has been expounded by Kirchhoff, Angström, and Stokes, was partially enunciated one hundred years ago by the mathematician Euler, when he said that every substance absorbs light of the special wave-length which corresponds to the vibration of its smallest particles. The 11th of July, 1861, will be ever memorable in the history of science as being the day on which Magnus read, before the Berlin Academy, Kirchhoff's memoir on the chemical constitution of the sun's atmosphere, and the existence in it of familiar substances found upon the earth. Speedily, spectroscopes were multiplied, modified, and improved, and became indispensable auxiliaries in the workshop, the laboratory, and the observatory. It is not necessary to enlarge upon what this instrument has done for common chemistry, in hunting out the minutest traces of common substances and detecting new ones. The physician, the physiologist, the zoologist, the botanist, and the technologist, have shared with the chemist and the physicist the services of this powerful analyst. But it is the highest prerogative of the spectroscope to be able to make a chemical analysis of celestial bodies, upon the single condition that they give to it their light. Polarization can only say whether any portion of this light is reflected. The motions which the telescope uncovers may decide in favor of a central attraction, but it is silent as to the intensity of this attraction unless the moving body belongs to the solar system. The universality of a gravitation may be proved, but not the universality of the very gravitation which pervades our own system, except by an argument from analogy. We see that one star differs from another star in glory. But what the other differences or resemblances are we know not, without the spectroscope. Henceforth astronomy possesses a new instrument of discovery, and also a new tribunal to which all speculations about the sun and the stars, the aurora and the zodiacal light, the meteors and the comets, must be brought and by which they must be judged.

I leave it to the naturalists to assign a value to the alleged anticipations of Darwin by the geometer Maupertuis, who was said to have died just before he was going to make monkeys talk. The whims and conceit of Lord Monboddo are not worthy of notice. Lamarck began life as a soldier, was a meteorologist as far and as long as Napoleon would allow him to be; perhaps he was a botanist from choice, but he was made a zoölogist, in spite of himself, by the revolutionary Convention. He was as brave in science as in war; but he expected to create it, by a simple effort of thought. Having demolished the modern chemistry, he turned his iconoclastic zeal into natural history.