Page:Popular Science Monthly Volume 67.djvu/34

This page has been proofread, but needs to be validated.
28
THE POPULAR SCIENCE MONTHLY.

to the other inactive products produced during the radioactive changes. The α particles expelled from the radioactive product are themselves non-radioactive. The measurement of the ratio e/m shows that they have an apparent mass intermediate between that of the hydrogen and helium atoms. If the a particles consist of any known kind of matter they must be atoms either of hydrogen or of helium. The actual value of e/m has not yet been determined with an accuracy sufficient to give a definite answer to the question. On account of the very slight curvature of the path of the a particles in a strong magnetic or electric field, accurate determination of e/m is beset with great difficulties. The experimental problem is still further complicated by the fact that the a particles escaping from a mass of radium have not all the same velocity and in consequence it is difficult to draw a definite conclusion from the observed deviation of the complex pencil of rays.

The results so far obtained are not inconsistent with the view that the a particles are helium atoms, and indeed it is difficult to escape from such a conclusion. On such a view, the helium, which is gradually produced in the emanation tube, is due to the collection of a particles expelled during the disintegration of the emanation and its further products. This conclusion is supported by evidence of another character. It is known that thorium minerals like monazite sand contain a large quantity of helium. In this respect they do not differ from uranium minerals which are rich in radium. The only common product of the different radioactive substances is the a particle and the occurrence of helium in all radioactive minerals is most simply explained on the supposition that the a particle is a projected helium atom. This conclusion could be indirectly tested by examining whether helium is produced in other substances besides radium, for example, in actinium and polonium.

The experimental determination of the origin of helium is beset with great difficulty on all sides. If the a particle is a helium atom, the total volume of helium produced in an emanation tube should be three times the initial volume of the emanation present, since the emanation in its rapid changes gives rise to three products each of which emits α particles. This is based on the assumption, which seems to be fulfilled by the experiments, that each atom of each product in breaking up expels one a particle. This at first sight offers a simple experimental means of settling the question, but a difficulty arises in accurately determining the volume of helium produced by a known quantity of the radium emanation. It would be expected that, if the emanation were isolated in a tube and left to stand, the volume of gas in the tube should increase with time in consequence of the liberation of helium. In one case, however, Ramsay and Soddy