Open main menu

Page:Popular Science Monthly Volume 70.djvu/352

This page has been proofread, but needs to be validated.

It might be supposed also that the movements of matter proper are exactly compensated by those of the ether; but that would lead us to the same reflections as before now. The principle so understood will explain everything, since, whatever might be the visible movements, we always could imagine hypothetical movements which compensate them. But if it is able to explain everything, this is because it does not enable us to foresee anything; it does not enable us to decide between the different possible hypotheses, since it explains everything beforehand. It therefore becomes useless.

And then the suppositions that it would be necessary to make on the movements of the ether are not very satisfactory. If the electric charges double, it would be natural to imagine that the velocities of the diverse atoms of ether double also, and for the compensation, it would be necessary that the mean velocity of the ether quadruple.

This is why I have long thought that these consequences of theory, contrary to Newton's principle, would end some day by being abandoned, and yet the recent experiments on the movements of the electrons issuing from radium seem rather to confirm them.

Lavoisier's Principle.—I arrive at the principle of Lavoisier on the conservation of mass. Certainly, this is one not to be touched without unsettling all mechanics. And now certain persons think that it seems true to us only because in mechanics merely moderate velocities are considered, but that it would cease to be true for bodies animated by velocities comparable to that of light. Now these velocities, it is believed at present, have been realized; the cathode rays or those of radium may be formed of very minute particles or of electrons which are displaced with velocities smaller no doubt than that of light, but which might be its one tenth or one third.

These rays can be deflected, whether by an electric field, or by a magnetic field, and we are able, by comparing these deflections, to measure at the same time the velocity of the electrons and their mass (or rather the relation of their mass to their charge). But when it was seen that these velocities approached that of light, it was decided that a correction was necessary. These molecules, being electrified. can not be displaced without agitating the ether; to put them in motion it is necessary to overcome a double inertia, that of the molecule itself and that of the ether. The total or apparent mass that one measures is composed, therefore, of two parts: the real or mechanical mass of the molecule and the electrodynamic mass representing the inertia of the ether.

The calculations of Abraham and the experiments of Kaufmann have then shown that the mechanical mass, properly so called, is null, and that the mass of the electrons, or, at least, of the negative electrons, is of exclusively electrodynamic origin. This is what forces us