Page:Popular Science Monthly Volume 80.djvu/23

This page has been proofread, but needs to be validated.
THE MECHANISTIC CONCEPTION OF LIFE
19

8. The Contents of Life

The contents of life from the cradle to the bier are wishes and hopes, efforts and struggles and unfortunately also disappointments and suffering. And this inner life should be amenable to a physico-chemical analysis? In spite of the gap which separates us to-day from such an aim I believe that it is attainable. As long as a life phenomenon has not yet found a physico-chemical explanation it usually appears inexplicable. If the veil is once lifted we are always surprised that we did not guess from the first what was behind it.

That in the case of our inner life a physico-chemical explanation is not beyond the realm of possibility is proved by the fact that it is already possible for us to explain cases of simple manifestations of animal instinct and will on a physico-chemical basis; namely, the phenomena which I have discussed in former papers under the name of animal tropisms. As the most simple example we may mention the tendency of certain animals to fly or creep to the light. We are dealing in this case with the manifestation of an instinct or impulse which the animals can not resist. It appears as if this blind instinct which these animals must follow, although it may cost them their life might be explained by the same law of Bunsen and Roscoe, which explains the photo-chemical effects in inanimate nature. This law states that within wide limits the photo-chemical effect equals the product of the intensity of light into the duration of illumination. It is not possible to enter here into all the details of the reactions of these animals to light, we only wish to point out in which way the light instinct of the animals may possibly be connected with the Bunsen-Roscoe law.

The positively heliotropic animals—i. e., the animals which go instinctively to a source of light—have in their eyes (and occasionally also in their skin) photosensitive substances which undergo chemical alterations by light. The products formed in this process influence the contraction of the muscles—mostly indirectly, through the central nervous system. If the animal is illuminated on one side only the mass of photochemical reaction products formed on that side in the unit of time is greater than on the opposite side. Consequently the development of energy in the symmetrical muscles on both sides of the body becomes unequal. As soon as the difference in the masses of the photochemical reaction products on both sides of the animal reaches a certain value the animal, as soon as it moves, is automatically forced to turn towards one side. As soon as it has turned so far that its plane of symmetry is in the direction of the rays, the symmetrical spots of its surface are struck by the light at the same angle and in this case the intensity of light and consequently the velocity of reaction of the photochemical processes on both sides of the animal become equal. There is no more reason for the animal to deviate from the motion in a