This page needs to be proofread.

1.11 Progress-M (1989-Present)

Progress-M (figure 1-26) is the Progress logistics resupply spacecraft upgraded by incorporating Soyuz-TM technology and other improvements.

Figure 1-26. Progress-M logistics resupply spacecraft.

1.11.1 Progress-M Specifications[1]

Figure 1-27. Ballistic return capsule (Raduga) during final descent to Earth.

Launch weight .......................................... 7130 kg
Weight of cargo (maximum) ....................... 2600 kg (maximum)
Weight of dry cargo (maximum) ................. 1500 kg (maximum)
Weight of liquid and gaseous
cargo (maximum) ..................................... 1540 kg* (maximum)
Length ..................................................... 7.23 m
Span across solar arrays .......................... 10.6 m
Volume of dry cargo compartment .............. 7.6 m3
Diameter of cargo modules ........................ 2.2 m
Maximum diameter ................................... 2.72 m

*Includes 200 kg of propellant transferred to Mir from Progress-M propulsion system.

1.11.2 Progress-M Notable Features

  • Independent flight time of up to 30 days (10 times longer than the Progress 1 through 42 spacecraft).
  • Increased cargo load delivered to Mir (on average, about 100 kg greater than carried by Progress 25 through 42).
  • Return payload capability when equipped with Raduga (“rainbow”) ballistic return capsule (figure 1-27). The Russians use this capsule to return small, valuable payloads from Mir. It was named Raduga largely for
marketing purposes. The capsule is carried in the Progress-M dry

cargo compartment. At the beginning of Raduga’s return to Earth, the Progress-M completes its deorbit burn. At an altitude of about 120 km, the capsule separates. The Progress-M undergoes destructive reentry, while the capsule makes an intact reentry, with landing and recovery in central Asia. Raduga is used to return up to 150 kg of payloads to Earth two or three times each year. Each Raduga capsule is about 1.5 m long, is 60 cm in diameter, and weighs about 350 kg empty. Use of the Raduga

  1. Technical Report: Russian Segment Systems Requirements Review in Support of International Space Station Alpha, Russian Space Agency-NPO Energia, December 1993, p. 42.