Page:Scientific Papers of Josiah Willard Gibbs.djvu/112

This page has been proofread, but needs to be validated.
76
EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES.

none of the assumptions which have been made, tacitly or otherwise, relating to the formation of these new parts, shall be violated. These assumptions are the following: that the relation between the variations of the energy, entropy, volume, etc., of any of the original parts is not affected by the vicinity of the new parts; and that the energy, entropy, volume, etc., of the system in its varied state are correctly represented by the sums of the energies, entropies, volumes, etc., of the various parts (original and new), so far at least as any of these quantities are determined or affected by the formation of the new parts. We will suppose to be so defined that these conditions shall not be violated. This may be done in various ways. We may suppose that the position of the surfaces separating the new and the original parts has been fixed in any suitable way. This will determine the space and the matter belonging to the parts separated. If this does not determine the division of the entropy, we may suppose this determined in any suitable arbitrary way. Thus we may suppose the total energy in and about any new part to be so distributed that equation (12) as applied to the original parts shall not be violated by the formation of the new parts. Or, it may seem more simple to suppose that the imaginary surface which divides any new part from the original is so placed as to include all the matter which is affected by the vicinity of the new formation, so that the part or parts which we regard as original may be left homogeneous in the strictest sense, including uniform densities of energy and entropy, up to the very bounding surface. The homogeneity of the new parts is of no consequence, as we have made no assumption in that respect. It may be doubtful whether we can consider the new parts, as thus bounded, to be infinitely small even in their earliest stages of development. But if they are not infinitely small, the only way in which this can affect the validity of our formulse will be that in virtue of the equations of condition, i.e., in virtue of the evident necessities of the case, finite variations of the energy, entropy, volume, etc., of the original parts will be caused, to which it might seem that equation (12) would not apply. But if the nature and state of the mass be not varied, equation (12) will hold true of finite differences. (This appears at once, if we integrate the equation under the above limitation.) Hence, the equation will hold true for finite differences, provided that the nature and state of the mass be infinitely little varied. For the differences may be considered as made up of two parts, of which the first are for a constant nature and state of the mass, and the second are infinitely small. We may therefore regard the new parts to be bounded as supposed without prejudice to the validity of any of our results.