Page:Scientific Papers of Josiah Willard Gibbs.djvu/118

This page has been proofread, but needs to be validated.
82
EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES.

which with (65) are evidently the same conditions which we would have obtained if we had neglected the fact of the solidity of one of the masses.

We have supposed the solid to be homogeneous. But it is evident that in any case the above conditions must hold for every separate point where the solid meets the fluid. Hence, the temperature and pressure and the potentials for all the actual components of the solid must have a constant value in the solid at the surface where it meets the fluid. Now, these quantities are determined by the nature and state of the solid, and exceed in number the independent variations of which its nature and state are capable. Hence, if we reject as improbable the supposition that the nature or state of a body can vary without affecting the value of any of these quantities, we may conclude that a solid which varies (continuously) in nature or state at its surface cannot be in equilibrium with a stable fluid which contains, as independently variable components, the variable components of the solid. (There may be, however, in equilibrium with the same stable fluid, a finite number of different solid bodies, composed of the variable components of the fluid, and having their nature and state completely determined by the fluid.)[1]


Effect of Additional Equations of Condition.

As the equations of condition, of which we have made use, are such as always apply to matter enclosed in a rigid, impermeable, and non-conducting envelop, the particular conditions of equilibrium which we have found will always be sufficient for equilibrium. But the number of conditions necessary for equilibrium, will be diminished, in a case otherwise the same, as the number of equations of condition is increased. Yet the problem of equilibrium which has been treated will sufficiently indicate the method to be pursued in all cases and the general nature of the results.

It will be observed that the position of the various homogeneous parts of the given mass, which is otherwise immaterial, may determine the existence of certain equations of condition. Thus, when different parts of the system in which a certain substance is a variable component are entirely separated from one another by parts of which this substance is not a component, the quantity of this substance will be invariable for each of the parts of the system which are thus separated, which will be easily expressed by equations of condition. Other equations of condition may arise from the passive forces (or resistances to change) inherent in the given masses. In the problem

  1. The solid has been considered as subject only to isotropic stresses. The effect of other stresses will be considered hereafter.