Page:Scientific Papers of Josiah Willard Gibbs.djvu/130

This page has been proofread, but needs to be validated.
94
EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES.

etc., denote the potentials for these substances in the homogeneous mass,

(121)

To show this, we will suppose the mass considered to be very large. Then, the first member of (121) denotes the increase of the energy of the mass produced by the addition of the matter represented by the first member of (120), and the second member of (121) denotes the increase of energy of the same mass produced by the addition of the matter represented by the second member of (120), the entropy and volume of the mass remaining in each case unchanged. Therefore, as the two members of (120) represent the same matter in kind and quantity, the two members of (121) must be equal.

But it must be understood that equation (120) is intended to denote equivalence of the substances represented in the mass considered, and not merely chemical identity; in other words, it is supposed that there are no passive resistances to change in the mass considered which prevent the substances represented by one member of (120) from passing into those represented by the other. For example, in respect to a mixture of vapor of water and free hydrogen and oxygen (at ordinary temperatures), we may not write

but water is to be treated as an independent substance, and no necessary relation will subsist between the potential for water and the potentials for hydrogen and oxygen.

The reader will observe that the relations expressed by equations (43) and (51) (which are essentially relations between the potentials for actual components in different parts of a mass in a state of equilibrium) are simply those which by (121) would necessarily subsist between the same potentials in any homogeneous mass containing as variable components all the substances to which the potentials relate.

In the case of a body of invariable composition, the potential for the single component is equal to the value of for one unit of the body, as appears from the equation

(122)

to which (96) reduces in this case. Therefore, when , the fundamental equation between the quantities in the set (102) (see page 88) and that between the quantities in (103) may be derived either from the other by simple substitution. But, with this single exception, an equation between the quantities in one of the sets (99)–(103) cannot be derived from the equation between the quantities in another of these sets without differentiation.