This page has been proofread, but needs to be validated.
SIPHONOPHORA]
HYDROMEDUSAE
159


From a comparison of the two embryological types there can be no doubt on two points; first, that the pneumatophore and the protocodon are strictly homologous, and, therefore if the nectocalyx is comparable to the umbrella of a medusa, as seems obvious, the pneumatophore must be so too; secondly, that the coenosarcal axis arises from the ex-umbrella of the medusa and cannot be compared to a manubrium, but is strictly comparable to the “bud-spike” of a Narcomedusan.

Theories of Siphonophore Morphology.—The many theories that have been put forward as to the interpretation of the cormus and the various parts are set forth and discussed in the treatise of Y. Delage and E. Hérouard (Hydrozoa [4]) and more recently by R. Woltereck [59], and only a brief analysis can be given here.

After C. Gegenbaur.
Fig. 73.Physophora hydrostatica.
a′,  Pneumatocyst.
t, Palpons.
a, Axis of the colony.
m, Nectocalyx.
o, Orifice of nectocalyx.
n, Siphon.
g, Gonophore.
i, Tentacle.

In the first place the cormus has been regarded as a single individual and its appendages as organs. This is the so-called “polyorgan” theory, especially connected with the name of Huxley; but it must be borne in mind that Huxley regarded all the forms produced, in any animal, between one egg-generation and the next, as constituting in the lump one single individual. Huxley, therefore, considered a hydroid colony, for example, as a single individual, and each separate polyp or medusa budded from it as having the value of an organ and not of an individual. Hence Huxley’s view is not so different from those held by other authors as it seems to be at first sight.

In more recent years Woltereck [59] has supported Huxley’s view of individuality, at the same time drawing a fine distinction between “individual” and “person.” The individual is the product of sexual reproduction; a person is an individual of lower rank, which may be produced asexually. A Siphonophore is regarded as a single individual composed of numerous zoids, budded from the primary zoid (siphon) produced from the planula. Any given zoid is a person-zoid if equivalent to the primary zoid, an organ-zoid if equivalent only to a part of it. Woltereck considers the siphonophores most nearly allied to the Narcomedusae, producing like the buds from an aboral stolon, the first bud being represented by the pneumatophore or protocodon, in different cases.

Contrasting, in the second place, with the polyorgan theory are the various “polyperson” theories which interpret the Siphonophore cormus as a colony composed of more or fewer individuals in organic union with one another. On this interpretation there is still room for considerable divergence of opinion as regards detail. To begin with, it is not necessary on the polyperson theory to regard each appendage as a distinct individual; it is still possible to compare appendages with parts of an individual which have become separated from one another by a process of “dislocation of organs.” Thus a bract may be regarded, with Haeckel, as a modified umbrella of a medusa, a siphon as its manubrium, and a tentacle as representing a medusan tentacle shifted in attachment from the margin to the sub-umbrella; or a siphon may be compared with a polyp, of which the single tentacle has become shifted so as to be attached to the coenosarc and so on. Some authors prefer, on the other hand, to regard every appendage as a separate individual, or at least as a portion of an individual, of which other portions have been lost or obliterated.

A further divergence of opinion arises from differences in the interpretation of the persons composing the colony. It is possible to regard the cormus (1) as a colony of medusa-persons, (2) as a colony of polyp-persons, (3) as composed partly of one, partly of the other. It is sufficient here to mention briefly the views put forward on this point by C. Chun and R. Haeckel.

Chun (Hydrozoa [1]) maintains the older views of Leuckart and Claus, according to which the cormus is to be compared to a floating hydroid colony. It may be regarded as derived from floating polyps similar to Nemopsis or Pelagohydra, which by budding produce a colony of polyps and also form medusa-buds. The polyp-individuals form the nutritive siphosome or trophosome. The medusa-buds are either fertile or sterile. If fertile they become free medusae or sessile gonophores. If sterile they remain attached and locomotor in function, forming the nectosome, the pneumatophore and swimming-bells.

Haeckel, on the other hand, is in accordance with Balfour in regarding a Siphonophore as a medusome, that is to say, as a colony composed of medusoid persons or organs entirely. Haeckel considers that the Siphonophores have two distinct ancestral lines of evolution:

1. In the Disconanthae, i.e. in such forms as Velella, Porpita, &c., the ancestor was an eight-rayed medusa (Disconula) which acquired a pneumatophore as an ectodermal pit on the ex-umbrella, and in which the organs (manubrium, tentacles, &c.) became secondarily multiplied, just as they do in Gastroblasta as the result of incomplete fission. The nearest living allies of the ancestral Disconula are to be sought in the Pectyllidae.

After Haeckel, from Lankester’s Treatise on Zoology.
Fig. 74.Stephalia corona, a young colony.
p Pneumatophore. l Aurophore. s Siphon.
n, Nectocalyx. lo, Orifice of the aurophore. t, Tentacle.

2. In the Siphonanthae, i.e. in all other Siphonophores, the ancestral form was a Siphonula, a bilaterally symmetrical Anthomedusa with a single long tentacle (cf. Corymorpha), which became displaced from the margin to the sub-umbrella. The Siphonula produced buds on the manubrium, as many Anthomedusae are known to do, and these by reduction or dislocation of parts gave rise to the various appendages of the colony. Thus the umbrella of the Siphonula became the protocodon, and its manubrium, the axis or stolon, which, by a process of dislocation of organs, escaped, as it were, from the sub-umbrella through a cleft and became secondarily attached to the ex-umbrella. It must be pointed out that, however probable Haeckel’s theory may be in other respects, there is not the slightest evidence for any such cleft in the umbrella having been present at any time, and that the embryological evidence, as already pointed out, is all against any homology between the stem and a manubrium, since the primary siphon does not become the stem, which arises from the ex-umbral side of the protocodon and is strictly comparable to a stolon.

Classification.—The Siphonophora may be divided, following Delage and Hérouard, into four sub-orders:

I. Chondrophorida (Disconectae Haeckel, Tracheophysae Chun). With an apical chambered pneumatophore, from which tracheal tubes may take origin (fig. 70); no nectocalyces or bracts; appendages all on the lower side of the pneumatophore arising from a compact coenosarc, and consisting of a central